We consider the boundary value problem of finite beam deflection on elastic foundation with two point boundary conditions of the form $ u^{(p)}(-l) = u^{(q)}(-l) = u^{(r)}(l) = u^{(s)}(l) = 0 $, $ p < q $, $ r < s $, which we call elementary. We explicitly compute the fundamental boundary matrices corresponding to 7 special elementary boundary conditions called the dwarfs, and show that the fundamental boundary matrices for the whole 36 elementary boundary conditions can be derived from those for the seven dwarfs.
Citation: Sung Woo Choi. Fundamental boundary matrices for 36 elementary boundary value problems of finite beam deflection on elastic foundation[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 13704-13753. doi: 10.3934/mbe.2023611
We consider the boundary value problem of finite beam deflection on elastic foundation with two point boundary conditions of the form $ u^{(p)}(-l) = u^{(q)}(-l) = u^{(r)}(l) = u^{(s)}(l) = 0 $, $ p < q $, $ r < s $, which we call elementary. We explicitly compute the fundamental boundary matrices corresponding to 7 special elementary boundary conditions called the dwarfs, and show that the fundamental boundary matrices for the whole 36 elementary boundary conditions can be derived from those for the seven dwarfs.
[1] | S. W. Choi, Explicit characteristic equations for integral operators arising from well-posed boundary value problems of finite beam deflection on elastic foundation, AIMS Math., 6 (2021), 10652–10678. https://doi.org/10.3934/math.2021619 doi: 10.3934/math.2021619 |
[2] | M. Hetényi, Beams on Elastic Foundation: Theory With Applications in The Fields of Civil and Mechanical Engineering, Ann Arbor: University of Michigan Press, 1971. |
[3] | S. Timoshenko, History of Strength of Materials: With A Brief Account of The History of Theory of Elasticity And Theory of Structures, New York-Toronto-London: McGraw-Hill Book Company, 1953. |
[4] | E. Alves, E. A. de Toledo, L. A. P. Gomes, M. B. de Souza Cortes, A note on iterative solutions for a nonlinear fourth order ODE, Bol. Soc. Parana. Mat., 27 (2009), 15–20. https://doi.org/10.5269/bspm.v27i1.9062 doi: 10.5269/bspm.v27i1.9062 |
[5] | F. W. Beaufait, P. W. Hoadley, Analysis of elastic beams on nonlinear foundations, Comput. Struct., 12 (1980), 669–676. https://doi.org/10.1016/0045-7949(80)90168-6 doi: 10.1016/0045-7949(80)90168-6 |
[6] | S. Boudaa, S. Khalfallah, E. Bilotta, Static interaction analysis between beam and layered soil using a two-parameter elastic foundation, Int. J. Adv. Struct. 11 (2019), 21–30. https://doi.org/10.1007/s40091-019-0213-9 doi: 10.1007/s40091-019-0213-9 |
[7] | A. Cabada, J. Fialho, F. Minhós, Extremal solutions to fourth order discontinuous functional boundary value problems, Math. Nachr., 286 (2013), 1744–1751. https://doi.org/10.1002/mana.201100239 doi: 10.1002/mana.201100239 |
[8] | M. Elshabrawy, M. A. Abdeen, S. Beshir, Analytic and numeric analysis for deformation of non-prismatic beams resting on elastic foundations, Beni-Suef Univ. J. Basic Appl. Sci. 2021 (2021), 10-57. https://doi.org/10.1186/s43088-021-00144-5 doi: 10.1186/s43088-021-00144-5 |
[9] | M. Galewski, On the nonlinear elastic simply supported beam equation, An. Ştiinţ Univ. Ovidius Constanţa Ser. Mat., 19 (2011), 109–120. |
[10] | Y. Kuo, S. Lee, Deflection of nonuniform beams resting on a nonlinear elastic foundation, Comput. Struct., 51 (1994), 513–519. https://doi.org/10.1016/0045-7949(94)90058-2 doi: 10.1016/0045-7949(94)90058-2 |
[11] | X. Ma, J. W. Butterworth, G. C. Clifton, Static analysis of an infinite beam resting on a tensionless Pasternak foundation, Eur. J. Mech. A Solids, 28 (2009), 697–703. https://doi.org/10.1016/j.euromechsol.2009.03.003 doi: 10.1016/j.euromechsol.2009.03.003 |
[12] | C. Miranda, K. Nair, Finite beams on elastic foundations, J. Struct. Div., 92 (1966), 131–142. https://doi.org/10.1061/JSDEAG.0001416 doi: 10.1061/JSDEAG.0001416 |
[13] | B. Y. Ting, Finite beams on elastic foundation with restraints, J. Struct. Div., 108 (1982), 611–621. https://doi.org/10.1061/JSDEAG.0005906 doi: 10.1061/JSDEAG.0005906 |
[14] | J. Valle, D. Fernández, J. Madrenas, Closed-form equation for natural frequencies of beams under full range of axial loads modeled with a spring-mass system, Int. J. Mech. Sci., 153 (2019), 380–390. https://doi.org/10.1016/j.ijmecsci.2019.02.014 doi: 10.1016/j.ijmecsci.2019.02.014 |
[15] | S. W. Choi, Existence and uniqueness of finite beam deflection on nonlinear non-uniform elastic foundation with arbitrary well-posed boundary condition, Bound. Value Probl., 2020 (2020), 113. https://doi.org/10.1186/s13661-020-01411-7 doi: 10.1186/s13661-020-01411-7 |
[16] | S. W. Choi, Spectral analysis for the class of integral operators arising from well-posed boundary value problems of finite beam deflection on elastic foundation: Characteristic equation, Bull. Korean Math. Soc., 58 (2021), 71–111. https://doi.org/10.4134/BKMS.b200041 doi: 10.4134/BKMS.b200041 |
[17] | I. Stakgold, M. Holst, Green's Functions and Boundary Value Problems, 3rd Edition, Hoboken, NJ: John Wiley & Sons, Inc., 2011. https://doi.org/10.1002/9780470906538 |
[18] | S. W. Choi, T. S. Jang, Existence and uniqueness of nonlinear deflections of an infinite beam resting on a non-uniform nonlinear elastic foundation, Bound. Value Probl., 2012 (2012), 5. https://doi.org/10.1186/1687-2770-2012-5 doi: 10.1186/1687-2770-2012-5 |
[19] | M. T. Chu, G. H. Golub, Inverse Eigenvalue Problems: Theory, Algorithms, and Applications, Oxford University Press, 2005. https://doi.org/10.1093/acprof: oso/9780198566649.001.0001 |
[20] | S. W. Choi, Spectral analysis of the integral operator arising from the beam deflection problem on elastic foundation Ⅱ: Eigenvalues, Bound. Value Probl., 2015 (2015), 6. https://doi.org/10.1186/s13661-014-0268-2 doi: 10.1186/s13661-014-0268-2 |