Citation: Ilaria Marotti, Giovanni Dinelli, Valeria Bregola, Sara Bosi. Nutritional characterization of Italian common bean landraces (Phaseolus vulgaris L.): fatty acid profiles for “genotype-niche diversity” fingerprints[J]. AIMS Agriculture and Food, 2020, 5(4): 543-562. doi: 10.3934/agrfood.2020.4.543
[1] | Chávez-Mendosa C, Sánchez E (2017) Bioactive compounds from Mexican varieties of the common bean (Phaseolus vulgaris): Implications for Health. Molecules 22: 1360-1392. doi: 10.3390/molecules22081360 |
[2] | Mecha E, Figueira ME, Patto MCV, et al. (2018) Two sides of the same coin: The impact of grain legumes on human health: Common Bean (Phaseolus vulgaris L.) as a case study, In: Jimenez-Lopez JC, Clemente A, Authors, Legume Seed Nutraceutical Research, London: IntechOpen, 25-46. |
[3] | Rivera A, Plans M, Sabaté J, et al. (2018) The Spanish Core Collection of Common Beans (Phaseolus vulgaris L.): An Important Source of Variability for Breeding Chemical Composition. Front Plant Sci 9: 1642. |
[4] | Blair MW, González LF, Kimani PM, et al. (2010) Genetic diversity, inter-gene pool introgression and nutritional quality of common beans (Phaseolus vulgaris L.) from Central Africa. Theor Appl Genet 121: 237-248. |
[5] | Piergiovanni AR, Lioi L (2010) Italian common bean landraces: history, genetic diversity and seed quality. Diversity 2: 837-862. doi: 10.3390/d2060837 |
[6] | Gioia T, Logozzo G, Marzario S, et al. (2019) Evolution of SSR diversity from wild types to U.S. advanced cultivars in the Andean and Mesoamerican domestications of common bean (Phaseolus vulgaris). PLoS ONE 14: e0211342. |
[7] | Brown JWS, Bliss, FA, Hall TC (1981) Linkage relationships between genes controlling seed proteins in French bean. Theor Appl Genet 60: 251-259. doi: 10.1007/BF02342545 |
[8] | Limongelli G, Laghetti G, Perrino P, et al. (1996) Variation of seed storage proteins in landraces of common bean (Phaseolus vulgaris L.) from Basilicata, Southern Italy. Euphytica 92: 393-399. |
[9] | Marotti I, Bonetti A, Minelli M, et al. (2007) Characterization of some Italian common bean (Phaseolus vulgaris L.) landraces by RAPD, semi-random and ISSR molecular markers. Genet Resour Crop Evo 54: 175-188. |
[10] | Celmeli T, Sari H, Canci H, et al. (2018) The nutritional content of common bean (Phaseolus vulgaris L.) Landraces in Comparison to Modern Varieties. Agronomy 8: 166. |
[11] | Kazai P, Noulas C, Khah E, et al. (2019) Yield and seed quality parameters of common bean cultivars grown under water and heat stress field conditions. AIMS Agric Food 4: 285-302. doi: 10.3934/agrfood.2019.2.285 |
[12] | Islam FMS, Basford KE, Jara C, et al. (2002) Seed compositional and disease resistance differences among gene pools in cultivated common bean. Genet Resour Crop Evol 49: 285-293. doi: 10.1023/A:1015510428026 |
[13] | Hacisalihoglu G, Settles AM (2013) Natural variation in seed composition of 91 common bean genotypes and their possible association with seed coat color. J Plant Nutr 36: 772-780. doi: 10.1080/01904167.2012.754041 |
[14] | Alvi G (2016) I legumi da granella [in Italian]. Ministero delle politiche agricole alimentari e forestali. Available from: https://www.politicheagricole.it/flex/cm/pages/ServeAttachment.php/L/IT/D/9%252Fa%252F7%252FD.9f3f0f994eaa34c93f9e/P/BLOB%3AID%3D9709/E/pdf. |
[15] | Siano F, Sorrentino G, Riccardi M, et al. (2018) Chemical, nutritional, and spectroscopic characterization of typical ecotypes of Mediterranean area beans. Eur Food Res Technol 244: 795-804. doi: 10.1007/s00217-017-3004-1 |
[16] | Dinelli G, Bonetti A, Minelli M, et al. (2006) Contents of flavonoids in the Italian bean (Phaseolus vulgaris L.) ecotypes. Food Chem 99: 105-114. doi: 10.1016/j.foodchem.2005.07.028 |
[17] | Starcher B (2001) A ninhydrin-based assay to quantitate the total protein content of tissue samples. Anal Biochem 292: 125-129. doi: 10.1006/abio.2001.5050 |
[18] | AOAC (1990) Official methods of analysis of the AOAC, 15th ed. Association of official analytical chemists. Arlington, VA, USA. |
[19] | Lowry OH, Rosenburgh NJ, Farr AL, et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275. |
[20] | Duranti M, Bernardi R, Lupi MC, et al. (1989) Phaseolus coccineus storage proteins. II. Electrophoretic Analysis and Erythroagglutinating Activity in Various Cultivars. Plant Breed 102: 58-65. |
[21] | Bosi S, Bregola V, Dinelli G, et al. (2019) The nutraceutical value of grain legumes: characterisation of bioactives and antinutritionals related to diabesity management. Int J Food Sci Tech 54: 2863-2871. doi: 10.1111/ijfs.14204 |
[22] | Perez-Hidalgo M, Guerra-Hernandez E, Garcia-Villanova B (1997) Determination of insoluble dietary fiber compounds: cellulose, hemicellulose and lignin in legumes. Ars Pharmaceutica 38: 357-364. |
[23] | Ulberth F, Henninger M (1992) One‐step extraction/methylation method for determining the fatty acid composition of processed foods. J Am Oil Chem Soc 69: 175-177. |
[24] | Onayemi O, Osibogun OA, Obembe O (1986) Effect of different storage and cooking methods on some biochemical, nutritional and sensory characteristics of cowpea (Vigna unguiculata L. Walp.). J Food Sci 51: 153-156. doi: 10.1111/j.1365-2621.1986.tb10858.x |
[25] | Rodrı́guez-Delgado M-Á, González-Hernández G, Conde-González J-E et al. (2002) Principal component analysis of the polyphenol content in young red wines. Food Chem 78: 523-553. doi: 10.1016/S0308-8146(02)00206-6 |
[26] | McLachlan GJ (ed), Discriminant Analysis and Statistical Pattern Recognition. New Jersey: John Wiley and Sons Inc, 2004. |
[27] | Vidigal Filho PS, Gonçalves-Vidigal MC, da Rocha AB, et al. (2011) Characterization and content of total soluble protein and amino acids of traditional common bean cultivars collected in Parana state, Brazil. J Food Agric Environ 9: 143-147. |
[28] | Muramoto K (2017) Review: Lectins as Bioactive Proteins in Foods and Feeds. Food Sci Technol Res 23: 487-494. doi: 10.3136/fstr.23.487 |
[29] | Barampama Z, Simard RE (1993) Nutrient composition, protein quality and antinutritional factors of some varieties of dry beans (Phaseolus vulgaris) grown in Burundi. Food Chem 47: 159-167. doi: 10.1016/0308-8146(93)90238-B |
[30] | de Mejía EG, Guzmán-Maldonado SH, Acosta-Gallegos JA, et al. (2003) Effect of cultivar and growing location on the trypsin inhibitors, tannins, and lectins of common beans (Phaseolus vulgaris L.) grown in the semiarid highlands of Mexico. J Agric Food Chem 51: 5962-5966. |
[31] | Shang R, Wu H, Guo R, et al. (2016) The diversity of four anti-nutritional factors in common bean. Hortic Plant J 2: 97-104. doi: 10.1016/j.hpj.2016.06.001 |
[32] | Lo Turco V, Potortì AG1, Rando R, et al. (2016) Functional properties and fatty acids profile of different beans varieties. Nat Prod Res 30: 2243-2248. doi: 10.1080/14786419.2016.1154056 |
[33] | Baptista A, Pinho O, Pinto P, et al. (2017) Characterization of protein and fat composition of seeds from common beans (Phaseolus vulgaris L.), cowpea (Vigna unguiculata L. Walp) and bambara groundnuts (Vigna subterranea L. Verdc) from Mozambique. Food Meas Charact 11: 442-450. |
[34] | Esteki M, Ahmadi P, Vander Heyden Y et al. (2019) Fatty Acids-Based Quality Index to Differentiate Worldwide Commercial Pistachio Cultivars. Molecules 24: 582019. |
[35] | Celmeli T, Sari H, Canci H et al. (2018) The Nutritional Content of Common Bean (Phaseolus vulgaris L.) Landraces in Comparison to Modern Varieties. Agronomy 8: 166. |
[36] | Hemingway J, Eskandri M, Rajcan I (2015) Genetic and Environmental Effects on Fatty Acid Composition in Soybeans with Potential Use in Automotive Industry. Crop Sci 55: 1-11. doi: 10.2135/cropsci2014.03.0249 |