Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article Special Issues

FMR1 is identified as an immune-related novel prognostic biomarker for renal clear cell carcinoma: A bioinformatics analysis of TAZ/YAP


  • Received: 08 March 2022 Revised: 15 June 2022 Accepted: 16 June 2022 Published: 24 June 2022
  • WW domain-containing transcription regulator 1 (TAZ, or WWTR1) and Yes-associated protein 1 (YAP) are both important effectors of the Hippo pathway and exhibit different functions. However, few studies have explored their co-regulatory mechanisms in kidney renal clear cell carcinoma (KIRC). Here, we used bioinformatics approaches to evaluate the co-regulatory roles of TAZ/YAP and screen novel biomarkers in KIRC. GSE121689 and GSE146354 were downloaded from the GEO. The limma was applied to identify the differential expression genes (DEGs) and the Venn diagram was utilized to screen co-expressed DEGs. Co-expressed DEGs obtained the corresponding pathways through GO and KEGG analysis. The protein-protein interaction (PPI) network was constructed using STRING. The hub genes were selected applying MCODE and CytoHubba. GSEA was further applied to identify the hub gene-related signaling pathways. The expression, survival, receiver operating character (ROC), and immune infiltration of the hub genes were analyzed by HPA, UALCAN, GEPIA, pROC, and TIMER. A total of 51 DEGs were co-expressed in the two datasets. The KEGG results showed that the enriched pathways were concentrated in the TGF-β signaling pathway and endocytosis. In the PPI network, the hub genes (STAU2, AGO2, FMR1) were identified by the MCODE and CytoHubba. The GSEA results revealed that the hub genes were correlated with the signaling pathways of metabolism and immunomodulation. We found that STAU2 and FMR1 were weakly expressed in tumors and were negatively associated with the tumor stages. The overall survival (OS) and disease-free survival (DFS) rate of the high-expressed group of FMR1 was greater than that of the low-expressed group. The ROC result exhibited that FMR1 had certainly a predictive ability. The TIMER results indicated that FMR1 was positively correlated to immune cell infiltration. The abovementioned results indicated that TAZ/YAP was involved in the TGF-β signaling pathway and endocytosis. FMR1 possibly served as an immune-related novel prognostic gene in KIRC.

    Citation: Sufang Wu, Hua He, Jingjing Huang, Shiyao Jiang, Xiyun Deng, Jun Huang, Yuanbing Chen, Yiqun Jiang. FMR1 is identified as an immune-related novel prognostic biomarker for renal clear cell carcinoma: A bioinformatics analysis of TAZ/YAP[J]. Mathematical Biosciences and Engineering, 2022, 19(9): 9295-9320. doi: 10.3934/mbe.2022432

    Related Papers:

    [1] Shengying Mu, Yanhui Zhou . An analysis of the isoparametric bilinear finite volume element method by applying the Simpson rule to quadrilateral meshes. AIMS Mathematics, 2023, 8(10): 22507-22537. doi: 10.3934/math.20231147
    [2] Zuliang Lu, Ruixiang Xu, Chunjuan Hou, Lu Xing . A priori error estimates of finite volume element method for bilinear parabolic optimal control problem. AIMS Mathematics, 2023, 8(8): 19374-19390. doi: 10.3934/math.2023988
    [3] Yuelong Tang . Error estimates of mixed finite elements combined with Crank-Nicolson scheme for parabolic control problems. AIMS Mathematics, 2023, 8(5): 12506-12519. doi: 10.3934/math.2023628
    [4] Zhichao Fang, Ruixia Du, Hong Li, Yang Liu . A two-grid mixed finite volume element method for nonlinear time fractional reaction-diffusion equations. AIMS Mathematics, 2022, 7(2): 1941-1970. doi: 10.3934/math.2022112
    [5] Yu Xu, Youjun Deng, Dong Wei . Numerical solution of forward and inverse problems of heat conduction in multi-layered media. AIMS Mathematics, 2025, 10(3): 6144-6167. doi: 10.3934/math.2025280
    [6] H. S. Alayachi, Mahmoud A. E. Abdelrahman, Kamel Mohamed . Finite-volume two-step scheme for solving the shear shallow water model. AIMS Mathematics, 2024, 9(8): 20118-20135. doi: 10.3934/math.2024980
    [7] Shuangbing Guo, Xiliang Lu, Zhiyue Zhang . Finite element method for an eigenvalue optimization problem of the Schrödinger operator. AIMS Mathematics, 2022, 7(4): 5049-5071. doi: 10.3934/math.2022281
    [8] Jie Liu, Zhaojie Zhou . Finite element approximation of time fractional optimal control problem with integral state constraint. AIMS Mathematics, 2021, 6(1): 979-997. doi: 10.3934/math.2021059
    [9] Zuliang Lu, Xiankui Wu, Fei Huang, Fei Cai, Chunjuan Hou, Yin Yang . Convergence and quasi-optimality based on an adaptive finite element method for the bilinear optimal control problem. AIMS Mathematics, 2021, 6(9): 9510-9535. doi: 10.3934/math.2021553
    [10] Weiwen Wan, Rong An . Convergence analysis of Euler and BDF2 grad-div stabilization methods for the time-dependent penetrative convection model. AIMS Mathematics, 2024, 9(1): 453-480. doi: 10.3934/math.2024025
  • WW domain-containing transcription regulator 1 (TAZ, or WWTR1) and Yes-associated protein 1 (YAP) are both important effectors of the Hippo pathway and exhibit different functions. However, few studies have explored their co-regulatory mechanisms in kidney renal clear cell carcinoma (KIRC). Here, we used bioinformatics approaches to evaluate the co-regulatory roles of TAZ/YAP and screen novel biomarkers in KIRC. GSE121689 and GSE146354 were downloaded from the GEO. The limma was applied to identify the differential expression genes (DEGs) and the Venn diagram was utilized to screen co-expressed DEGs. Co-expressed DEGs obtained the corresponding pathways through GO and KEGG analysis. The protein-protein interaction (PPI) network was constructed using STRING. The hub genes were selected applying MCODE and CytoHubba. GSEA was further applied to identify the hub gene-related signaling pathways. The expression, survival, receiver operating character (ROC), and immune infiltration of the hub genes were analyzed by HPA, UALCAN, GEPIA, pROC, and TIMER. A total of 51 DEGs were co-expressed in the two datasets. The KEGG results showed that the enriched pathways were concentrated in the TGF-β signaling pathway and endocytosis. In the PPI network, the hub genes (STAU2, AGO2, FMR1) were identified by the MCODE and CytoHubba. The GSEA results revealed that the hub genes were correlated with the signaling pathways of metabolism and immunomodulation. We found that STAU2 and FMR1 were weakly expressed in tumors and were negatively associated with the tumor stages. The overall survival (OS) and disease-free survival (DFS) rate of the high-expressed group of FMR1 was greater than that of the low-expressed group. The ROC result exhibited that FMR1 had certainly a predictive ability. The TIMER results indicated that FMR1 was positively correlated to immune cell infiltration. The abovementioned results indicated that TAZ/YAP was involved in the TGF-β signaling pathway and endocytosis. FMR1 possibly served as an immune-related novel prognostic gene in KIRC.



    Variable density and low Mach numbers flows have been widely investigated for the last decades. Indeed, they arise in plenty of physical phenomena in which the sound wave speed is much faster than the convective characteristics of the fluid : flows in high-temperature gas reactors, meteorological flows, combustion processes and many others. In this work, we are interested in a specific model derived from the usual low-Mach one for a calorically perfect gas, coming from an asymptotic expansion of the variables with respect to the Mach number M in the Navier-Stokes compressible equations (see [34]). For the usual low-Mach model, the local-in-time existence of classical solutions in Sobolev spaces is established in [23]. As observed in [33], a small perturbation of a constant initial density provides a global existence of weak solutions in the two-dimensional case. The originality of the model considered here relies on the dynamic viscosity of the fluid being explicitly given as a function of the temperature, as introduced in [4] and generalized in [5]. In this recent work, the authors establish the global existence of weak solutions in the three-dimensional case with no smallness assumption on the initial velocity.

    Thanks to a change of variables, we obtain a system in which the velocity field is divergence-free, leading in return to the presence of a non linear and so-called "Joule term" in the mass conservation equation expressed in term of the temperature. In [8], some theoretical results are obtained on the local-in-time existence of strong solutions in the three-dimensional case. We mention also [19] where the authors study the local and global existence in critical Besov spaces, assuming that the initial density is close to a constant and that the initial velocity is small enough. The formulation of this model is close to the so-called ghost effect system, considered in [30,32], where a thermal stress term is added to the right-hand-side of the momentum equation. The local well-posedness of classical solutions is established in [32] for 2D or 3D unbounded domains. A local well-posedness result for strong solutions is proved in [30], where the authors give also the existence and uniqueness of a global strong solution for the two-dimensional case.

    From a numerical point of view, many authors compute flows at low-Mach number regime. We refer only to the so-called pressure-based methods, widely used to compute incompressible flows (see e.g. [1,2,20,29,31]), but there exists also the so-called density-based methods widely used to compute supersonic or transonic flows, and recently adapted in the case of low-Mach regime (see [27,28]). In previous contributions on incompressible variable density flows [6,9,10] or on low-Mach flows with large variations of temperature [7], a combined finite volume - finite element scheme was proposed. Based on a time splitting, this combined method allows to solve the mass conservation equation by a finite volume method, whereas the momentum equation associated with the divergence free constraint and the temperature one are solved by a finite element method. It allows, in particular, to preserve the constant density states and to ensure the discrete maximum principle. In the present work, following the same idea, the nonlinear temperature equation is solved by a finite volume method, whereas the velocity equation associated with the divergence free constraint is solved by a finite element one.

    The main contribution of this paper is twofold. First, we prove a discrete maximum principle on the temperature (see Theorem 3.1), similarly to the solution behavior at the continuous level. Second, we establish a footbridge between the finite volume fluxes and the finite element velocity field (see subsection 3.4), to ensure the good consistency of the method.

    The outline of the paper is the following. Section 2 briefly introduces the model derivation. Section 3 details the proposed combined finite volume - finite element scheme. The maximum principle is established (Theorem 3.1), some variants of the original scheme are proposed (subsection 3.3), and the link between the finite volume fluxes and the finite element velocity field is carefully explained (subsection 3.4). Finally, section 4 proposes several numerical tests to illustrate the obtained theoretical results, and to investigate the behavior of the scheme on a physical benchmark corresponding to the convection of the temperature in a cavity.

    As already mentioned in the introduction, a low-Mach model is obtained by inserting the asymptotic expansions of the variables with respect to the Mach number M in the Navier-Stokes compressible equations (see for example [2,20,34]). One of the characteristics of the process is to consider the asymptotic expansion of the pressure π with respect to M. Denoting xRd as the space variable and tR+ as the time one, we write

    π(x,t)=P(t)+M2q(x,t)+o(M2),

    where P is called the thermodynamic pressure and q the dynamic pressure. Here, we assume that P(t)=P0>0 is constant for all t0. The other variables considered here are the velocity u(x,t), the density ρ(x,t) and the temperature θ(x,t).

    Let ΩRd be an open polygonal domain with a boundary Γ and T a positive real. The continuity, momentum, temperature and state equations in QT=Ω×[0;T] for a calorically perfect gas are given by:

    tρ+(ρu)=0, (2.1a)
    [0.1cm]ρtu+ρuu+q(˜μ(2Du23uI))=ρg, (2.1b)
    [0.1cm]u=γ1γP0(κθ), (2.1c)
    [0.1cm]P0=Rρθ, (2.1d)

    where ˜μ is the viscosity of the flow, κ is the heat conductivity which is assumed constant, R is the gas law constant and γ is the gas specific heat ratio. Here, Du=(u+Tu)/2 denotes the deformation tensor, I the identity matrix and g(x,t) the gravity field. In order to reduce the study to a system whose velocity is solenoidal, we define:

    v=uλθ,

    where λ=(γ1)κγP0>0 is a fixed constant. In addition, the density is eliminated from the equations thanks to the state equation (2.1d). Following the idea introduced in [5] where a particular relation between the density and the viscosity in the combustion model was introduced, we assume moreover that

    ˜μ(θ)=P0Rμ(θ),

    with

    μ(θ)=λlnθ,

    so that μ(θ) is strictly positive if and only if θ(0;1). If we denote by p the modified pressure, defined by:

    p=RP0q+λ2Δθ2λ3μ(θ)Δθ,

    we consequently obtain (see [8] for all details):

    tθ+(θv)+2λ|θ|2λ(θθ)=0, (2.2a)
    1θ(tv+(v)v)(μ(θ)Dv)+λθ(vTv)θ+p=1θg, (2.2b)
    v=0. (2.2c)

    The system (2.2) needs to be completed with suitable initial and boundary conditions. We set ¯Γ=¯ΓD¯ΓN, with ΓDΓN=. The initial conditions for the system (2.2) are given by:

    θ(x,0)=θ0(x)xΩ,v(x,0)=v0(x)xΩ,

    with:

    0<mminxΩθ0(x)maxxΩθ0(x)M<1.

    The boundary conditions on the temperature and the velocity are given by:

    θ(x,t)n=0,xΓN,t[0;T],θ(x,t)=θD(x,t),xΓD,t[0;T],v(x,t)=vD(x,t),xΓ,t[0;T].

    The local existence of a regular solution to the problem (2.2) has been shown in [8] in the case of dimension d=3, as well as the maximum principle for the temperature. Furthermore, the unique global strong solution can be proved in the case of dimension d=2 following the proof of Theorem 1.5 in [30] and assuming that for any fixed ˉθ>0, there exists a small constant δ(ˉθ)>0 such that

    (2.3)

    In this paper, we will prove that there exists at least one solution to the discretized temperature equation, and that this solution verifies the maximum principle. The questions of unicity and convergence of the numerical scheme will be addressed in a further work.

    The numerical scheme is based on a time splitting, allowing to solve the temperature equation with finite volumes, whereas the velocity equation is solved with finite elements, using the same strategy as in previous works [7,9].

    Let \Delta t be the time step and t^n = n \, \Delta t . Functions approximated at time t^n will be identified with superscript n . Assuming that \theta^n and \mathbf{v}^n are known:

    1. We first compute the new temperature \theta^{n+1} by solving the temperature equation (2.2a) using an Euler implicit scheme:

    \begin{equation} \begin{cases} \dfrac{ \theta^{n+1}- \theta^n}{\Delta t}+ \nabla \cdot( \theta^{n+1} \, \mathbf{v}^{n}) +2 \lambda |\nabla \theta^{n+1} |^2-\lambda\nabla \cdot( \theta^{n+1} \, \nabla \theta^{n+1}) = 0, \\ \nabla \theta^{n+1}( \textbf{x}) \cdot \mathbf{n} = 0, \quad \forall \textbf{x} \in \Gamma^N, \\ \theta^{n+1}( \textbf{x}) = \theta_D^{n+1}( \textbf{x}), \quad \forall \textbf{x} \in \Gamma^D, \end{cases} \end{equation} (3.1)

    with \theta_D^{n+1}(\textbf{x}) = \theta_D(\textbf{x}, t^{n+1}) . The non-linearities of Equation (3.1) are treated thanks to Newton's method.

    2. Then we compute the new velocity \mathbf{v}^{n+1} and the new pressure p^{n+1} by solving the momentum equation (2.2b)-(2.2c) by:

    \begin{equation} \begin{cases} \dfrac{1}{ \theta^{n+1}} \left(\dfrac{ \mathbf{v}^{n+1}- \mathbf{v}^n}{\Delta t} + ( \mathbf{v}^n \cdot \nabla) \mathbf{v}^{n+1} \right) -\nabla \cdot (\mu( \theta^{n+1}) {\mathbb{D}} \mathbf{v}^{n+1}) + \dfrac{\lambda}{ \theta^{n+1}} (\nabla \mathbf{v}^{n+1}-\nabla^T \mathbf{v}^{n+1})\ \nabla \theta^{n+1}\\ + \nabla p^{n+1} = \dfrac{1}{ \theta^{n+1}} \mathbf{g}, \\ \nabla \cdot \mathbf{v}^{n+1} = 0, \\ \mathbf{v}^{n+1}( \textbf{x}) = \mathbf{v}_D^{n+1}( \textbf{x}), \quad \forall \textbf{x} \in \Gamma. \end{cases} \end{equation} (3.2)

    Here and as usual, the nonlinear term in the momentum equation (3.2) is linearized.

    From now, we fix d = 2 , but our study can be easily extended to the three-dimensional case. The discretization in space is based on a triangulation \mathcal{T} of the domain \Omega \subset \mathbb{R}^2 (the elements of \mathcal{T} are called control volumes), a family \mathcal{E} of edges and a set \mathcal{P} = (\textbf{x}_K)_{K\in \mathcal{T}} of points of \Omega defining an admissible mesh in the sense of Definition 3.1 in [25]. We recall that the admissibility of \mathcal{T} implies that the straight line between two neighboring centers of cells \textbf{x}_K and \textbf{x}_L is orthogonal to the edge \sigma\in \mathcal{E} such that \overline{\sigma} = \overline{K} \cap \overline{L} (and which is noted \sigma = K|L ) in a point \textbf{x}_\sigma (see Figure 1). This condition is satisfied if all the angles of the triangles are less than \frac{\pi}{2} .

    Figure 1.  Degrees of Freedom (DoF) for each variable.

    The set of interior (resp. boundary) edges is denoted by \mathcal{E}^{\mathrm{int}} = \left\{ \sigma \in \mathcal{E} \; \ \sigma \not\subset \Gamma\right\} (resp. \mathcal{E}^{\mathrm{ext}} = \left\{ \sigma \in \mathcal{E} \; \ \sigma \subset \Gamma\right\} ). Among the outer edges, there are \mathcal{E}^N = \left\{ \sigma \in \mathcal{E} \; \ \sigma \subset \Gamma^N \right\} and \mathcal{E}^D = \left\{ \sigma \in \mathcal{E} \; \ \sigma \subset \Gamma^D \right\} . For all K \in \mathcal{T} , we denote by \mathcal{E}_K = \left\{ \sigma \in \mathcal{E} \; \ \sigma \subset \overline{K} \right\} the edges of K , \mathcal{E}^{\mathrm{int}}_K = \mathcal{E}^{\mathrm{int}} \cap \mathcal{E}_K , \mathcal{E}^{\mathrm{ext}}_K = \mathcal{E}^{\mathrm{ext}} \cap \mathcal{E}_K , \mathcal{E}_K^N = \mathcal{E}_K^N\cap \mathcal{E}_K and \mathcal{E}_K^D = \mathcal{E}_K^D \cap \mathcal{E}_K .

    The measure of K \in \mathcal{T} is denoted by m_K and the length of \sigma by m_\sigma . For \sigma \in \mathcal{E}^{\mathrm{int}} such that \sigma = K|L , d_\sigma denotes the distance between \textbf{x}_K and \textbf{x}_L and d_{K, \sigma} the distance between \textbf{x}_K and \sigma . For \sigma \in \mathcal{E}^{\mathrm{ext}}_K , we note d_\sigma the distance between \textbf{x}_K and \sigma . For \sigma \in \mathcal{E} , The transmissibility coefficient is given by \tau_\sigma = \dfrac{m_\sigma}{d_\sigma} . Finally, for \sigma \in \mathcal{E}_K , we denote by \mathbf{n}_{K, \sigma} the exterior unit normal vector to \sigma . The size of the mesh is given by:

    \begin{equation*} h = \max\limits_{K\in \mathcal{T}} \mathrm{diam} (K). \end{equation*}

    The piecewise constant temperature \theta_h is computed with a cell-centered finite volume method described in section 3.2, so that \theta_h \in \mathcal{X}(\mathcal{T}) with :

    \begin{equation*} \mathcal{X}( \mathcal{T}) = \left\{ \theta \in L^2(\Omega) \ ; \ \forall K \in \mathcal{T} \ ; \ \theta_K = \theta|_K \in \mathbb{P}_0\right\}. \end{equation*}

    The velocity \mathbf{v}_h is discretized with \mathbb{P}_2 -Lagrange finite elements, and the pressure p_h with \mathbb{P}_1 -Lagrange finite elements, so that they satisfy the usual LBB stability condition. The Degrees of Freedom of each variable are shown in the Figure 1.

    The computation of the velocity and pressure by finite elements is usual, and we refer to our previous work for details [7,9]. One of the original points of the present work is the computation of the temperature by finite volumes. Indeed, we aim to develop a numerical scheme that ensures the discrete maximum principle property, see section 3.2. Another point of interest is the link between the two numerical methods, see section 3.4. Indeed, from the velocity field that has been computed by finite elements, we have to determine fluxes through the interfaces of the control volumes, which will be used for the computation of the temperature.

    Let \mathbf{v} be a given velocity field and \theta^n the previous approximate temperature, we aim at solving the temperature equation:

    \begin{equation} \begin{cases} \dfrac{ \theta^{n+1}- \theta^n}{\Delta t}+\nabla \cdot( \theta^{n+1}\, \mathbf{v}) +2 \lambda |\nabla \theta^{n+1} |^2 -\lambda \nabla \cdot( \theta^{n+1}\nabla \theta^{n+1}) = 0, \quad \forall \textbf{x} \in \Omega, \\ \nabla \theta^{n+1}( \textbf{x}) \cdot \mathbf{n} = 0, \quad \forall \textbf{x} \in \Gamma^N, \\ \theta^{n+1}( \textbf{x}) = \theta_D^{n+1}( \textbf{x}), \quad \forall \textbf{x} \in \Gamma^D. \end{cases} \end{equation} (3.3)

    Since we want to ensure maximum principle properties, we favor a finite volume method. The main difficulty comes from the term |\nabla \theta^{n+1}|^2 , called the Joule term in the context of the electrical conductivity, see for example A. Bradji and R. Herbin [3] or the works from C. Chainais and her collaborators [13,14]. Indeed, the definition of a discrete gradient is not straightforward, since the finite volume solution is piecewise constant. We can thus refer to the work of R. Eymard and his collaborators [24,26] for some definitions of discrete gradients on an admissible mesh. Alternatively, K. Domelevo and P. Omnes [21], and C. Chainais [13], used a discrete gradient reconstruction following the idea from the paper of Y. Coudière, J.-P. Vila and P. Villedieu [18]. The principle of these schemes, valid on very general meshes, consists in the double resolution of the equations, on primal and dual meshes. Moreover in [22], J. Droniou and R. Eymard propose a scheme whose unknowns are the function, its gradient and flows. Therefore, the definition of a discrete gradient by mesh is intrinsic to the scheme.

    The respect of the bounds, and in particular of the lower bound, is another difficulty related to the Joule term. Indeed, if we consider "close" models, like the equation of porous media, see for example the work of C. Cancès and C. Guichard [12], or the convection-diffusion equation involved in Khazhikhov-Smagulov models-type, see for example C. Calgaro, M. Ezzoug and E. Zahrouni [11], the maximum principle is obtained quite easily for one order schemes. Nevertheless, adding the positive term |\nabla \theta^{n+1}|^2 in the temperature equation prevents the scheme from directly obtaining the lower bound. Consequently, we will have to particularly pay attention to the discretization of this term.

    We are looking for \theta_h^{n+1} = (\theta_K^{n+1})_{K\in \mathcal{T}} \in \mathcal{X}(\mathcal{T}) an approximated solution of \theta(t^{n+1}, .) . The finite volume scheme is classically obtained by integrating equation (3.3) on a control volume K , that is:

    \begin{equation} m_K \dfrac{ \theta^{n+1}_K- \theta^n_K}{\Delta t} +\sum\limits_{\sigma \in \mathcal{E}_K}^{} v_{K, \sigma}^{n} \, \theta_{\sigma, +}^{n+1} +2\lambda\, m_K\, \mathcal{J}_K( \theta_h^{n+1}) +\lambda\sum\limits_{\sigma \in \mathcal{E}_K}^{} F_{K, \sigma}^{n+1} = 0 \quad \mbox{for all } K \in \mathcal{T}, \end{equation} (3.4)

    with

    \begin{equation} v_{K, \sigma}^{n} = \int_\sigma \mathbf{v}( \textbf{x}, t^{n}) \cdot \mathbf{n}_{K, \sigma}\, \mathrm{d} \gamma( \textbf{x}). \end{equation} (3.5)

    Here, \theta_{\sigma, +}^{n+1} is defined for \sigma \in \mathcal{E}_K by:

    \begin{equation} \theta_{\sigma, +}^{n+1} = \left\{ \begin{array}{ll} \theta_K^{n+1} & \mbox{if } v_{K, \sigma}^{n} \geq 0, \\ \theta_{K, \sigma}^{n+1} & \mbox{otherwise, } \end{array} \right. \end{equation} (3.6)

    with

    \begin{equation*} \theta_{K, \sigma}^{n+1} = \left\{ \begin{array}{ll} \theta_L^{n+1} & \mbox{for } \sigma \in \mathcal{E}^{\mathrm{int}}_K \text{ such that } \sigma = K|L, \\ \theta_D^{n+1}( \textbf{x}_\sigma)& \text{for } \sigma \in \mathcal{E}_K^D, \\ \theta_{K}^{n+1} & \text{for } \sigma \in \mathcal{E}_K^N. \end{array} \right. \end{equation*}

    The numerical flux F_{K, \sigma}^{n+1} is an approximation of the exact flux of the diffusive term through the edge \sigma and is given by:

    \begin{equation} F_{K, \sigma}^{n+1} = \tau_\sigma \, \theta_\sigma^{n+1} ( \theta_K^{n+1}- \theta_{K, \sigma}^{n+1}), \end{equation} (3.7)

    where we define \theta_\sigma^{n+1} , an approximation of \theta^{n+1} at \textbf{x}_\sigma , by:

    \begin{equation} \theta_\sigma^{n+1} = \max ( \theta_K^{n+1}, \theta_{K, \sigma}^{n+1}). \end{equation} (3.8)

    Concerning the Joule term, \mathcal{J}_K(\theta_h^{n+1}) is an approximation of \frac{1}{m_K} \int_K |\nabla \theta(t^{n+1}, \textbf{x})|^2 \mathrm{d} \textbf{x} . We notice that |\nabla \theta|^2 = \nabla \cdot (\theta\, \nabla \theta)- \theta \, \Delta \theta , and we propose the following definition:

    \begin{equation*} \mathcal{J}_K( \theta_h^{n+1}) = \dfrac{1}{m_K}\sum\limits_{\sigma \in \mathcal{E}_K} \tau_\sigma \, \overline{ \theta}_\sigma^{n+1}\left( \theta_{K, \sigma}^{n+1}- \theta_K^{n+1}\right) -\dfrac{1}{m_K} \theta_K^{n+1} \sum\limits_{\sigma \in \mathcal{E}_K} \tau_\sigma \, \left( \theta_{K, \sigma}^{n+1}- \theta_K^{n+1}\right), \end{equation*}

    where \overline{ \theta}_\sigma^{n+1} is another approximation of \theta^{n+1} at \textbf{x}_\sigma (this choice will be justified later) defined this time by:

    \begin{equation} \overline{ \theta}_\sigma^{n+1} = \dfrac{ \theta_K^{n+1} + \theta_{K, \sigma}^{n+1}}{2}. \end{equation} (3.9)

    Finally we obtain:

    \begin{equation} \mathcal{J}_K( \theta_h^{n+1}) = \dfrac{1}{2\, m_K}\sum\limits_{\sigma \in \mathcal{E}_K}^{} \tau_\sigma ( \theta_{K, \sigma}^{n+1}- \theta_K^{n+1})^2. \end{equation} (3.10)

    The rest of the section is devoted to the proof of the following result:

    Theorem 3.1. We assume that

    \begin{equation} 0 \lt m\leq \theta^0_K \leq M, \quad \forall K\in \mathcal{T}, \end{equation} (3.11)

    and:

    \begin{equation} m\leq \theta_D^n ( \textbf{x}_\sigma) \leq M, \quad \forall \sigma \in \mathcal{E}^D, \, \forall n = 1, \cdots, N. \end{equation} (3.12)

    Then the scheme (3.4) admits at least one solution that satisfies:

    \begin{equation} m\leq \theta^n_K \leq M, \quad \forall K\in \mathcal{T}, \, \forall n = 1, \cdots, N. \end{equation} (3.13)

    Proof. We start by studying the following intermediate scheme:

    \begin{equation} m_K \dfrac{ \theta^{n+1}_K- \theta^n_K}{\Delta t} +\sum\limits_{\sigma \in \mathcal{E}_K}^{} v_{K, \sigma}^{n} \, \theta_{\sigma, +}^{n+1} +2\lambda\, m_K\, \mathcal{J}_K( \theta_h^{n+1}) +\lambda\sum\limits_{\sigma \in \mathcal{E}_K}^{} \tilde{F}_{K, \sigma}^{n+1} = 0 \quad \mbox{for all } K \in \mathcal{T}, \end{equation} (3.14)

    with the modified numerical flux

    \begin{equation} \tilde{F}_{K, \sigma}^{n+1} = \tau_\sigma \, \tilde{ \theta}_\sigma^{n+1} ( \theta_K^{n+1}- \theta_{K, \sigma}^{n+1}), \end{equation} (3.15)

    and

    \begin{equation} \tilde{ \theta}_\sigma^{n+1} = \max \left(0, \theta_\sigma^{n+1}, \theta_\sigma^{n+1}-\, \left(\min( \theta_K^{n+1}, \theta_{K, \sigma}^{n+1})-m\right)\right), \quad \text{for }\sigma \in \mathcal{E}_K. \end{equation} (3.16)

    We underline that the definition (3.16) ensures that \tilde{ \theta}_\sigma^{n+1} \geq 0 . With this choice in the scheme (3.14), the diffusion term has been a little "inflated" in order to compensate the Joule term and to increase the stability, as it will be seen later. Note moreover that if \theta_h^{n+1} is solution of (3.14) and satisfies (3.13), it is also solution of (3.4).

    The schedule of proof is as follows. We first show in Lemma 3.2 that a solution of (3.14) satisfies the discrete maximum principle. Then, by an argument of topological degree, we prove the existence of a solution to (3.14) (see Lemma 3.3). As this solution satisfies the maximum principle, it is also a solution of (3.4) and this concludes the proof of Theorem 3.1.

    Lemma 3.2. We assume that (3.11) and (3.12) are satisfied. Let \theta_h^{n+1} be a solution of (3.14). Then \theta_h^{n+1} satisfies (3.13).

    Proof. For n = 0 , the property (3.13) clearly holds because of (3.11). Suppose now that (3.13) holds at step n and assume that there exists K_M \in \mathcal{T} such that:

    \begin{equation*} \theta^{n+1}_{K_M} = \max\limits_{K\in \mathcal{T}} \theta_K^{n+1} \gt M. \end{equation*}

    We write (3.14) for the control volume K_M and obtain:

    \begin{equation} \sum\limits_{\sigma \in \mathcal{E}_{K_M}}^{} v_{{K_M}, \sigma}^{n} \, \theta_{\sigma, +}^{n+1} +\lambda \sum\limits_{\sigma \in \mathcal{E}_{K_M}}^{} \tau_\sigma ( \theta_{K_M, \sigma}^{n+1}- \theta_{K_M}^{n+1})^2 +\lambda\sum\limits_{\sigma \in \mathcal{E}_{K_M}}^{} \tau_\sigma \, \tilde{ \theta}_\sigma^{n+1} ( \theta_{K_M}^{n+1}- \theta_{K_M, \sigma}^{n+1}) = m_{K_M} \dfrac{ \theta^{n}_{K_M}- \theta^{n+1}_{K_M}}{\Delta t} . \end{equation} (3.17)

    The right hand side of (3.17) is negative, whereas the left hand side is non-negative (indeed, the treatment of the first term is classical, see for instance [25], and the sign of other terms is obvious). We thus obtain a contradiction.

    Assume now that there exists K_m \in \mathcal{T} such that:

    \begin{equation} \theta^{n+1}_{K_m} = \min\limits_{K\in \mathcal{T}} \theta_K^{n+1} \lt m. \end{equation} (3.18)

    We write (3.14) on K_m :

    \begin{equation} \sum\limits_{\sigma \in \mathcal{E}_{K_m}}^{} v_{_{K_m}, \sigma}^{n} \, \theta_{\sigma, +}^{n+1} +\lambda \sum\limits_{\sigma \in \mathcal{E}_{K_m}}^{} \tau_\sigma ( \theta_{K_m, \sigma}^{n+1}- \theta_{K_m}^{n+1})^2 +\lambda\sum\limits_{\sigma \in \mathcal{E}_{K_m}}^{} \tau_\sigma \, \tilde{ \theta}_\sigma^{n+1} ( \theta_{K_m}^{n+1}- \theta_{K_m, \sigma}^{n+1}) = m_{K_m} \dfrac{ \theta^{n}_{K_m}- \theta^{n+1}_{K_m}}{\Delta t}. \end{equation} (3.19)

    The right hand side of (3.19) is positive. Looking now at the left hand side, we notice that the first (see [25]) and third terms are non positive, whereas the second is non negative. Thus, to obtain a contradiction, we must reach a balance between the Joule term and the diffusive one. By noticing that:

    \begin{array}{l} &\sum\limits_{\sigma \in \mathcal{E}_{K_m}}^{} \tau_\sigma ( \theta_{K_m, \sigma}^{n+1}- \theta_{K_m}^{n+1})^2 +\sum\limits_{\sigma \in \mathcal{E}_{K_m}}^{} \tau_\sigma \, \tilde{ \theta}_\sigma^{n+1} ( \theta_{K_m}^{n+1}- \theta_{K_m, \sigma}^{n+1})\\ = & \sum\limits_{\sigma \in \mathcal{E}_{K_m}}^{} \tau_\sigma ( \theta_{K_m}^{n+1}- \theta_{K_m, \sigma}^{n+1}+ \tilde{ \theta}_\sigma^{n+1}) ( \theta_{K_m}^{n+1}- \theta_{K_m, \sigma}^{n+1}), \end{array}

    a sufficient condition to obtain the contradiction is to show that for all \sigma \in \mathcal{E}_K , \theta_{K_m}^{n+1}- \theta_{K_m, \sigma}^{n+1}+\tilde{ \theta}_\sigma^{n+1}\geq 0 . Indeed it holds, because of (3.18) and Definition (3.16) of \tilde{ \theta}_\sigma^{n+1} , we have:

    \begin{equation} \theta_{K_m}^{n+1}- \theta_{K_m, \sigma}^{n+1}+\tilde{ \theta}_\sigma^{n+1} = \theta_{K_m}^{n+1}- \theta_{K_m, \sigma}^{n+1}+ \theta_{K_m, \sigma}^{n+1}-( \theta_{K_m}^{n+1}-m) = m \geq 0. \end{equation} (3.20)

    Lemma 3.3. We assume that (3.11) and (3.12) are satisfied. Then the scheme (3.14) admits at least one solution.

    Proof. Lemma 3.3 is proved thanks to a topological degree argument (see for instance [25]). Let \mu \in [0, 1] , we define \theta_{h, \mu}^{n+1} = (\theta_{K, \mu}^{n+1})_{K\in \mathcal{T}} as the solution of the scheme: \forall K\in \mathcal{T} ,

    \begin{align} &m_K \dfrac{ \theta^{n+1}_{K, \mu}- \theta^n_K}{\Delta t} +\sum\limits_{\sigma \in \mathcal{E}_K}^{} v_{K, \sigma}^{n} \, \theta_{\sigma, +, \mu}^{n+1} +2\mu\, \lambda\, m_{K}\, \mathcal{J}_{K}( \theta_h^{n+1}) +\mu \, \lambda\sum\limits_{\sigma \in \mathcal{E}_K}^{} \tilde{F}_{K, \sigma, \mu}^{n+1}\\ & +2(1-\mu) \lambda\, m_{K}\, \overline{ \mathcal{J}}_{K}( \theta_{h, \mu}^{n+1}) +(1-\mu) \, \lambda \sum\limits_{\sigma \in \mathcal{E}_K}^{} \overline{F}_{K, \sigma, \mu}^{n+1} = 0, \end{align} (3.21)

    where \theta_{\sigma, +, \mu}^{n+1} and \tilde{F}_{K, \sigma, \mu}^{n+1} are respectively defined by (3.6) and (3.15) by replacing \theta^{n+1}_K and \theta^{n+1}_L by \theta_{K, \mu}^{n+1} and \theta_{L, \mu}^{n+1} ; also \overline{F}_{K, \sigma, \mu}^{n+1} is defined by (3.22) and \overline{ \mathcal{J}}_{K}(\theta_{h, \mu}^{n+1}) by (3.23):

    \begin{align} \overline{F}_{K, \sigma, \mu}^{n+1} = & \tau_\sigma\, M\, ( \theta_{K, \mu}^{n+1}- \theta_{K, \sigma, \mu}^{n+1}). \end{align} (3.22)
    \begin{align} \overline{ \mathcal{J}}_{K}( \theta_{h, \mu}^{n+1}) = & \dfrac{1}{2\, m_K} \left(M-m \right) \sum\limits_{\sigma \in \mathcal{E}_K}^{} \tau_\sigma \, ( \theta_{K, \sigma, \mu}^{n+1}- \theta_{K, \mu}^{n+1}) . \end{align} (3.23)

    Then (3.21) is equivalent to:

    \begin{array}{l} &m_K \dfrac{ \theta^{n+1}_{K, \mu}- \theta^n_K}{\Delta t} +\sum\limits_{\sigma \in \mathcal{E}_K}^{} v_{K, \sigma}^{n} \, \theta_{\sigma, +, \mu}^{n+1} +2\mu\, \lambda\, m_{K}\, \mathcal{J}_{K}( \theta_{h, \mu}^{n+1}) +\mu \, \lambda\sum\limits_{\sigma \in \mathcal{E}_K}^{} \tilde{F}_{K, \sigma, \mu}^{n+1}\nonumber\\ & +(1-\mu) \, \lambda \, m \sum\limits_{\sigma \in \mathcal{E}_K}^{} \tau_\sigma \left( \theta_{K, \mu}^{n+1}- \theta_{K, \sigma, \mu}^{n+1}\right) = 0, \end{array}

    and consequently, we can show as in the proof of Lemma 3.2 that for all K\in \mathcal{T} ,

    \begin{equation} m\leq \theta^{n+1}_{K, \mu}\leq M. \end{equation} (3.24)

    We now define \mathcal{K} = [m-1;M+1]^{\# \mathcal{T}} a compact of \mathbb{R}^{\# \mathcal{T}} , and \mathcal{H}\, :\, [0, 1]\times \mathbb{R}^{\# \mathcal{T}} \longrightarrow \mathbb{R}^{\# \mathcal{T}} by: \forall K \in \mathcal{T} ,

    \begin{array}{l} \mathcal{H}_K(\mu, ( \theta^{n+1}_K)_{K\in \mathcal{T}}) = & m_K \dfrac{ \theta^{n+1}_{K, \mu}- \theta^n_K}{\Delta t} +\sum\limits_{\sigma \in \mathcal{E}_K}^{} v_{K, \sigma}^{n} \, \theta_{\sigma, +, \mu}^{n+1} +2\mu\, \lambda\, m_{K}\, \mathcal{J}_{K}( \theta_h^{n+1}) +\mu \, \lambda\sum\limits_{\sigma \in \mathcal{E}_K}^{} \tilde{F}_{K, \sigma, \mu}^{n+1}\nonumber\\ & +2(1-\mu) \lambda\, m_{K}\, \overline{ \mathcal{J}}_{K}( \theta_{h, \mu}^{n+1}) +(1-\mu) \, \lambda \sum\limits_{\sigma \in \mathcal{E}_K}^{} \overline{F}_{K, \sigma, \mu}^{n+1}. \end{array}

    Then, \mathcal{H} \in \mathcal{C}([0, 1]\times \mathcal{K}, \mathbb{R}^{\# \mathcal{T}}) and thanks to (3.24),

    \begin{equation*} \mathcal{H}_K(\mu, ( \theta^{n+1}_K)_{K\in \mathcal{T}}) = 0 \end{equation*}

    admits no solution on \partial \mathcal{K} . Consequently, its topological degree is independent of \mu . As (3.21) admits a solution for \mu = 0 its topological degree is different from zero. We can now conclude that (3.21) has a solution for \mu = 1 , and therefore (3.14) has at least one solution.

    Lemma 3.2 and Lemma 3.3 conclude the proof of Theorem 3.1 since as already mentioned, if \theta_h^{n+1} is solution of (3.14) and satisfies (3.13), it is also solution of (3.4).

    In this subsection, several variants of the scheme (3.4) , denoted in the following (\mathcal{S} \mathcal{D}_\mathrm{max} \mathcal{J}_\mathrm{cen}) , are presented. The scheme (\mathcal{S} \mathcal{D}_\mathrm{moy} \mathcal{J}_\mathrm{up}) (subsection 3.3.1) will also fulfill the discrete maximum principle without any condition, whereas the scheme (\mathcal{S} \mathcal{D}_\mathrm{moy} \mathcal{J}_\mathrm{cen}) (subsection 3.3.2) as well as (\mathcal{S} \mathcal{D}_\mathrm{max} \mathcal{J}_\mathrm{EGH}) and (\mathcal{S} \mathcal{D}_\mathrm{moy} \mathcal{J}_\mathrm{EGH}) (subsection 3.3.3) will fulfill the discrete maximum principle under some restrictions on the temperature bounds m and M .

    We propose here a first variant of (\mathcal{S} \mathcal{D}_\mathrm{max} \mathcal{J}_\mathrm{cen}) , which also leads to an unconditionally maximum principle. The idea is to consider the scheme (3.4), but with two differences compared to (\mathcal{S} \mathcal{D}_\mathrm{max} \mathcal{J}_\mathrm{cen}) . On the one hand, the diffusion term is centered, by defining now \theta_\sigma^{n+1} used in the definition of the diffusive flux F_{K, \sigma}^{n+1} in (3.7) by:

    \begin{equation} \theta_\sigma^{n+1} = \dfrac{ \theta_K^{n+1} + \theta_{K, \sigma}^{n+1}}{2} \end{equation} (3.25)

    instead of (3.8). On the other hand, an upwind in the Joule term gives us

    \begin{equation} { \mathcal{J}}_{K}( \theta_h^{n+1}) = \dfrac{1}{m_K}\sum\limits_{\sigma \in \mathcal{E}_K}^{} \tau_\sigma \left( ( \theta_K^{n+1}- \theta_{K, \sigma}^{n+1})^+\right)^2 \end{equation} (3.26)

    instead of (3.10), where we use the notation a^+ = \max (0, a) . In that case, the maximum principle occurs. Indeed, the proof of Theorem 3.1 can easily be adapted by noticing that \left((\theta_K^{n+1}- \theta_{K, \sigma}^{n+1})^+\right)^2 = 0 if \theta_K^{n+1}\leq \theta_{K, \sigma}^{n+1} . Let us note that the combination of (3.8) for the diffusion flux definition associated to (3.26) for the Joule term flux definition would also lead to a scheme with an unconditional maximum principle. Nevertheless, this choice would generate a loss of accuracy compared with (\mathcal{S} \mathcal{D}_\mathrm{max} \mathcal{J}_\mathrm{cen}) and (\mathcal{S} \mathcal{D}_\mathrm{moy} \mathcal{J}_\mathrm{up}) which are both already unconditionally maximum-principle preserving. Since it is useless to upwind both the diffusion term and the Joule one, we did not considered it.

    Remark 3.4. Note that we could also have considered the following definition in the diffusion term:

    \begin{equation} \theta_\sigma^{n+1} = \left\{ \begin{array}{ll} \dfrac{d_{L, \sigma} \, \theta_K^{n+1} + d_{K, \sigma} \, \theta_L^{n+1}}{d_{\sigma}}, &\quad ~~for ~~\sigma = K|L, \\[0.4cm] \dfrac{ \theta_K^{n+1}+ \theta_{D, \sigma}^{n+1}}{2}, & \quad ~~for~~ \sigma \in \mathcal{E}^D_K. \end{array} \right. \end{equation} (3.27)

    From the theoretical and numerical points of view, the cases (3.25) and (3.27) give similar results.

    A quite natural question, in order to increase the accuracy of the approximation, is to investigate the behaviour of the scheme when both flux are centered. Namely, it would consist in considering (3.25) for the definition of the diffusive flux F_{K, \sigma}^{n+1} in (3.7), while using (3.10) for the Joule term flux definition. In that case, the upper bound can be obtained in the same way as in Lemma 3.2. Nevertheless, the obtention of the lower bound needs an additional assumption, so that the maximum principle can be ensured by a specific balance between the Joule term and the diffusion one. The definition of \tilde{ \theta}_\sigma^{n+1} in (3.16) has to be a little modified and given by :

    \tilde{ \theta}_\sigma^{n+1} = \max \left(0, \theta_\sigma^{n+1}, \theta_\sigma^{n+1}-\, \frac32 \left(\min( \theta_K^{n+1}, \theta_{K, \sigma}^{n+1})-m\right)\right) \quad \text{for }\sigma \in \mathcal{E}_K,

    so that the positivity of \theta_{K_m}^{n+1}- \theta_{K_m, \sigma}^{n+1}+\tilde{ \theta}_\sigma^{n+1} (see (3.20)) is ensured provided that M \leq 3 m . As it will be illustrated in the numerical test 4.1 below, such a condition is necessary. This can seem strange from the physical point of view. As we see in the proof, it is necessary for technical reasons, but could also be linked to the fact that the global solution in time of the continuous model is ensured if the initial datum is not too far from a constant state (see (2.3)). Anyway, even with this restriction in mind, (\mathcal{S} \mathcal{D}_\mathrm{moy} \mathcal{J}_\mathrm{cen}) could be used for cases where temperature variations are low, to expect a better accuracy of the solution compared to the one obtained by (\mathcal{S} \mathcal{D}_\mathrm{max} \mathcal{J}_\mathrm{cen}) or (\mathcal{S} \mathcal{D}_\mathrm{moy} \mathcal{J}_\mathrm{up}) .

    Finally, two other schemes are investigated, considering another way to define the piecewise discrete gradient in each control volume given by (see [26]) :

    \begin{align} { \mathcal{J}}_K( \theta_h^{n+1}) = &\left(\dfrac{1}{m_K}\sum\limits_{\sigma \in \mathcal{E}_K}^{} \tau_\sigma ( \theta_K^{n+1}- \theta_{K, \sigma}^{n+1}) ( \textbf{x}_\sigma- \textbf{x}_K)\right)^2, \end{align} (3.28)

    while considering either (3.8) or (3.25) for the computation of \theta_\sigma^{n+1} arising in the definition of F_{K, \sigma}^{n+1} given by (3.7), and leading respectively to the schemes denoted (\mathcal{S} \mathcal{D}_\mathrm{max} \mathcal{J}_\mathrm{EGH}) and (\mathcal{S} \mathcal{D}_\mathrm{moy} \mathcal{J}_\mathrm{EGH}) . Once again and in both cases, the maximum principle is ensured under a condition M \leq C(\mathcal{T}) \, m with C(\mathcal{T}) \in (1, 2) , depending on geometrical characteristics of the mesh (see [17]).

    In Section 4, we implement these different schemes and compare them on two main criteria: verification of the maximum principle and convergence rates. Table 1 summarizes the five considered schemes.

    Table 1.  Summary of considered schemes.
    Diffusion term
    \theta_\sigma^{n+1}=
    \dfrac{ \theta_K^{n+1}+ \theta_{K, \sigma}^{n+1}}{2} \max(\theta_K^{n+1}, \theta_{K, \sigma}^{n+1})
    Joule Term \dfrac{1}{2\, m_K}\sum\limits_{\sigma \in \mathcal{E}_K}^{} \tau_\sigma (\theta_{K}^{n+1}- \theta_{K, \sigma}^{n+1})^2 (\mathcal{S} \mathcal{D}_\mathrm{moy} \mathcal{J}_\mathrm{cen}) (\mathcal{S} \mathcal{D}_\mathrm{max} \mathcal{J}_\mathrm{cen})
    \mathcal{J}_K(\theta_ \mathcal{T}^{n+1})= \dfrac{1}{m_K}\sum\limits_{\sigma \in \mathcal{E}_K}^{} \tau_\sigma \left((\theta_{K}^{n+1}- \theta_{K, \sigma}^{n+1})^+\right)^2 (\mathcal{S} \mathcal{D}_\mathrm{moy} \mathcal{J}_\mathrm{up}) \Huge{ \times}
    \left(\dfrac{1}{m_K}\sum_{\sigma \in \mathcal{E}_K}^{} \tau_\sigma (\theta_K^{n+1}- \theta_{K, \sigma}^{n+1}) (\textbf{x}_\sigma- \textbf{x}_K)\right)^2 (\mathcal{S} \mathcal{D}_\mathrm{moy} \mathcal{J}_\mathrm{EGH}) (\mathcal{S} \mathcal{D}_\mathrm{max} \mathcal{J}_\mathrm{EGH})

     | Show Table
    DownLoad: CSV

    The resolution by a finite element method of (3.2) gives us the velocity field \mathbf{v}_h^{n+1} which is \mathbb{P} _2 on each triangle K\in \mathcal{T} . Let us denote by (\mathbf{v}_\sigma^{n+1})_{\sigma \in \mathcal{E}} the value of this velocity field at the center of edges. Thus, the local divergence constraint reads:

    \begin{equation} \sum\limits_{\sigma \in \mathcal{E}_K} m_\sigma \, \mathbf{v}_\sigma^{n+1} \cdot \mathbf{n}_{K, \sigma} = \alpha_K, \quad \forall K\in \mathcal{T}. \end{equation} (3.29)

    The sequence of reals (\alpha_K)_{K\in \mathcal{T}} is different from zero in general. Consequently, the velocity field (\mathbf{v}_\sigma^{n+1})_{\sigma \in \mathcal{E}} is not divergence-free in the Finite Volume sense, and can not be used for the resolution of the temperature equation. Here we can not follow the idea of [9], adapted in [7] for the projection method, which consists in defining a constant velocity per triangle. Indeed, the unknowns for the temperature are located at the center of the cells, and no more at the vertices of the mesh.

    For \sigma \in \mathcal{E}^{\mathrm{int}} , we define arbitrarly K_\sigma^+ and K_\sigma^- the two triangles such that \sigma = K_\sigma^+ |K_\sigma^- . For \sigma \in \mathcal{E}^{\mathrm{ext}} , we denote by K_\sigma^+ the triangle such that \sigma \subset \partial K_\sigma^+ . Let \mathbf{n}_\sigma the unit normal vector to \sigma getting out of K_\sigma^+ , see Figure 2.

    Figure 2.  Neighboring triangles of \sigma and unit normal vector.

    We also define \forall K \in \mathcal{T} and \forall \sigma \in \mathcal{E}_K :

    \begin{equation*} \varepsilon_{K, \sigma} = \left\{ \begin{array}{ll} 1 & \text{if } K = K_\sigma^+, \\ {-1}& {\text{if } K = K_\sigma^-.} \end{array} \right. \end{equation*}

    By denoting (f_\sigma) \in \mathbb{R}^{\# \mathcal{E}} the global numerical flux defined by:

    \begin{equation*} f_\sigma = m_\sigma \, \mathbf{v}^{n+1}_\sigma \cdot \mathbf{n}_\sigma, \quad \forall \sigma \in \mathcal{E}, \end{equation*}

    equation (3.29) can be written as:

    \begin{equation} \sum\limits_{\sigma \in \mathcal{E}_K} \varepsilon_{K, \sigma} \, f_\sigma = \alpha_K, \quad \forall K\in \mathcal{T}. \end{equation} (3.30)

    We now approximate (f_\sigma)_{\sigma \in \mathcal{E}} by (\tilde{f}_\sigma)_{\sigma \in \mathcal{E}} in order to obtain the local divergence-free constraint

    \begin{equation} \sum\limits_{\sigma \in \mathcal{E}_K} \varepsilon_{K, \sigma} \, \tilde{f}_\sigma = 0, \quad \forall K\in \mathcal{T}. \end{equation} (3.31)

    Then the fluxes (\tilde{f}_\sigma)_{\sigma \in \mathcal{E}} are used in the cell-centered Finite Volume scheme (3.4) for the computation of the temperature field, by setting:

    v_{K, \sigma}^{n+1} = \varepsilon_{K, \sigma} \, \tilde{f}_\sigma.

    Practically, (\tilde{f}_\sigma)_{\sigma \in \mathcal{E}} is computed as an approximation of ({f}_\sigma)_{\sigma \in \mathcal{E}} in the discrete least-mean-squares sense, which fulfills the divergence-free constraint on each finite volume control. It consists in solving the global optimization problem given by:

    \begin{equation} (\tilde{f}_\sigma) = \underset{(\tilde{h}_\sigma) \in \mathbb{R}^{\# \mathcal{E}}}{\mathrm{argmin}} \left\{ \dfrac{1}{2} \sum\limits_{\sigma \in \mathcal{E}^{\mathrm{int}}} w_\sigma \left(f_\sigma-\tilde{h}_\sigma\right)^2 \quad ; \quad \forall K \in \mathcal{T}, \quad\sum\limits_{\sigma \in \mathcal{E}_K} \varepsilon_{K, \sigma} \, \tilde{h}_\sigma = 0\right\}, \end{equation} (3.32)

    where (w_\sigma)_{\sigma\in \mathcal{E}} is a sequence of strictly positive weights, which can be defined for example by w_\sigma = 1 or w_\sigma = \frac{m_\sigma}{d_\sigma} , \forall \sigma \in \mathcal{E} . Numerically, we observed similar behaviors for both possibilities. The solution of the problem (3.32) is given by the following theorem:

    Theorem 3.5. Let \mathbf{M} \in \mathbb{R}^{\# \mathcal{T} \times \# \mathcal{T}} the M-matrix defined \forall K, L\in \mathcal{T} by:

    \begin{array}{l} \mathbf{M}_{KL} = \left\{ \begin{array}{ll} \sum\limits_{\sigma \in \mathcal{E}_K} \dfrac{1}{w_\sigma} & \mathit{\text{if}}~~ K = L, \\[0.2cm] -\dfrac{1}{w_\sigma} & \mathit{\text{si}}~~ \overline{K}\cap \overline{L} = \sigma, \\ 0 & \mathit{\text{otherwise, }}~~ \end{array} \right. \end{array}

    and A = (\alpha_K)_{K\in \mathcal{T}} \in \mathbb{R}^{\# \mathcal{T}} . Let \Lambda = (\lambda_K)_{K\in \mathcal{T}} \in \mathbb{R}^{\# \mathcal{T}} be the solution of:

    \begin{equation} \mathbf{M}\, \Lambda = A. \end{equation} (3.33)

    Thus the solution of (3.32) can be defined \forall \sigma \in \mathcal{E} by:

    \begin{equation} \tilde{f}_\sigma = f_\sigma-\dfrac{1}{w_\sigma} \left( \lambda_{K_\sigma^+}-\lambda_{K_\sigma^-}\right), \end{equation} (3.34)

    where for all \sigma \in \mathcal{E}^{\mathrm{ext}} such that \sigma \subset \partial K , we set \lambda_{K_\sigma^-} = 0 .

    Proof. With the following change of variables:

    \begin{equation} g_\sigma = \tilde{f}_\sigma-f_\sigma, \end{equation} (3.35)

    problem (3.32) writes:

    \begin{equation} ({g}_\sigma) = \underset{({h}_\sigma)\in \mathbb{R}^{\# \mathcal{E}}}{\mathrm{argmin}} \left\{ \dfrac{1}{2} \sum\limits_{\sigma \in \mathcal{E}} w_\sigma h_\sigma^2 \quad ; \quad \forall K \in \mathcal{T}, \quad\sum\limits_{\sigma \in \mathcal{E}_K} \varepsilon_{K, \sigma} \, h_\sigma+\alpha_K = 0\right\}. \end{equation} (3.36)

    We define the lagrangian associated with (3.36) for (h_\sigma) \in \mathbb{R}^{\# \mathcal{E}} and (\mu_K) \in \mathbb{R}^{\# \mathcal{T}} by:

    \begin{equation*} \mathcal{L}\left((h_\sigma), (\mu_K)\right) = \dfrac{1}{2} \sum\limits_{\sigma \in \mathcal{E}} w_\sigma h_\sigma^2 + \sum\limits_{K\in \mathcal{T}} \mu_K \left( \sum\limits_{\sigma \in \mathcal{E}_K} \varepsilon_{K, \sigma}\, h_\sigma+\alpha_K\right). \end{equation*}

    We will show the existence of a saddle point of \mathcal{L} . Its first argument will therefore be the solution of the problem (3.36), while the second one corresponds to the Lagrange multiplier associated with the constraints, see for example [16]. We recall that if \left((g_\sigma), (\lambda_K)\right) is a saddle point of \mathcal{L} , then:

    \begin{equation*} \sup\limits_{(\mu_K)} \inf\limits_{(h_\sigma)} \mathcal{L}\left((h_\sigma), (\mu_K)\right) = \mathcal{L}\left((g_\sigma), (\lambda_K)\right) = \inf\limits_{(h_\sigma)} \sup\limits_{(\mu_K)} \mathcal{L}\left((h_\sigma), (\mu_K)\right). \end{equation*}

    We start with computing \mathcal{H}\left((\mu_K)\right) = \inf_{(h_\sigma)} \mathcal{L}\left((h_\sigma), (\mu _K)\right) . We easily verify that (g_\sigma) (which depends on (\mu_K) ) defined by:

    \begin{equation} g_\sigma = -\dfrac{1}{w_\sigma}\left(\mu_{K_\sigma^+}-\mu_{K_\sigma^-}\right), \quad \forall \sigma \in \mathcal{E} \end{equation} (3.37)

    is solution of

    \begin{equation*} \dfrac{\partial {\mathcal{L}} }{\partial {h_\sigma}}\left((g_\sigma), (\mu_K)\right) = 0. \end{equation*}

    We thus obtain:

    \begin{array}{l} \mathcal{H}\left((\mu_K)\right) = \, \dfrac{1}{2} \sum\limits_{\sigma \in \mathcal{E}} \dfrac{1}{w_\sigma} \left( \mu_{K_\sigma^+}-\mu_{K_\sigma^-}\right)^2+\sum\limits_{K\in \mathcal{T}} \mu_K \left( \sum\limits_{\sigma \in \mathcal{E}_K} -\dfrac{\varepsilon_{K, \sigma}}{w_\sigma} \left( \mu_{K_\sigma^+}-\mu_{K_\sigma^-}\right) +\alpha_K\right)\\ = \, - \dfrac{1}{2} \sum\limits_{\sigma \in \mathcal{E}} \dfrac{1}{w_\sigma} \left(\mu_{K_\sigma^+}-\mu_{K_\sigma^-}\right)^2 +\sum\limits_{K\in \mathcal{T}} \mu_K \, \alpha_K\\ = \, - \dfrac{1}{2} \sum\limits_{\sigma \in \mathcal{E}} \dfrac{1}{w_\sigma} \left(\mu_{K}-\mu_{K, \sigma}\right)^2 +\sum\limits_{K\in \mathcal{T}} \mu_K \, \alpha_K, \end{array}

    with the notation

    \begin{equation} \mu_{K, \sigma} = \left\{ \begin{array}{ll} \mu_L &\text{if }\sigma \in \mathcal{E}^{\mathrm{int}}_K, \quad \sigma = K|L, \\ 0 & \text{if } \sigma \in \mathcal{E}^{\mathrm{ext}}_K. \end{array} \right. \end{equation} (3.38)

    We now compute (\lambda_K) = \underset{({\mu_K})}{\mathrm{argmax}} \ \mathcal{H}\left((\mu_K)\right) by solving:

    \begin{equation*} \dfrac{\partial {(-\mathcal{H})} }{\partial {\mu_K}}\left((\lambda_K)\right) = 0, \quad \forall K\in \mathcal{T}, \end{equation*}

    which is equivalent, applying the notation (3.38) to \lambda_{K, \sigma} , to

    \begin{equation*} \label{def_lambdaK} \sum\limits_{\sigma \in \mathcal{E}_K} \dfrac{1}{w_\sigma} \left(\lambda_{K}-\lambda_{K, \sigma}\right)-\alpha_K = 0. \end{equation*}

    Thus, (\lambda_K) is obtained by solving the linear system (3.33). We therefore deduce the expression of (g_\sigma) thanks to (3.37) and then (\tilde{f}_\sigma) with (3.35).

    We previously proved that the schemes (\mathcal{S} \mathcal{D}_\mathrm{max} \mathcal{J}_\mathrm{cen}) and (\mathcal{S} \mathcal{D}_\mathrm{moy} \mathcal{J}_\mathrm{up}) satisfy the maximum principle, without any restriction on m and M . This first experiment illustrates that if M is too large compared to m , the other schemes do not respect the maximum principle. In this perspective, we consider only the temperature equation (2.2a) and set:

    \begin{equation*} \mathbf{v}( \textbf{x}, t) = \mathbf{0}, \quad \forall \textbf{x}\in \Omega, \quad \forall t \in [0, T]. \end{equation*}

    The initial temperature is defined on \Omega = [0;1]^2 by:

    \begin{equation*} \theta_0( \textbf{x}) = 1, \quad \forall \textbf{x} \in \Omega. \end{equation*}

    On all the boundaries, we impose Dirichlet conditions, see Figure 3. We denote by \Gamma_H = \{ 1\}\times (0, 3; 0, 7) and set \forall t \in [0;T] :

    \begin{equation*} \theta_D( \textbf{x}, t) = \left\{ \begin{array}{ll} 1 & \text{if } \textbf{x} \in \Gamma \backslash \Gamma_H\\ M& \text{if } \textbf{x} \in \Gamma_H. \end{array} \right. \end{equation*}
    Figure 3.  Initial and boundary conditions.

    We run the simulations for different values of M on a triangulation \mathcal{T} with mesh size h = 7.25 \cdot 10^{-2} and report the results in the Table 2. We find numerically the results shown previously. On the one hand, the schemes (\mathcal{S} \mathcal{D}_\mathrm{max} \mathcal{J}_\mathrm{cen}) and (\mathcal{S} \mathcal{D}_\mathrm{moy} \mathcal{J}_\mathrm{up}) allow us to obtain the maximum principle whatever the value of M . On the other hand, the schemes (\mathcal{S} \mathcal{D}_\mathrm{moy} \mathcal{J}_\mathrm{cen}) , (\mathcal{S} \mathcal{D}_\mathrm{moy} \mathcal{J}_\mathrm{EGH}) and (\mathcal{S} \mathcal{D}_\mathrm{max} \mathcal{J}_\mathrm{EGH}) do not give a solution that satisfies the maximum principle if M is too large.

    Table 2.  Verification of the maximum principle according to M . \checkmark : the maximum principle is satisfied, {\LARGE \times} : it is not.
    (\mathcal{S} \mathcal{D}_\mathrm{moy} \mathcal{J}_\mathrm{EGH}) (\mathcal{S} \mathcal{D}_\mathrm{max} \mathcal{J}_\mathrm{EGH}) (\mathcal{S} \mathcal{D}_\mathrm{moy} \mathcal{J}_\mathrm{cen}) (\mathcal{S} \mathcal{D}_\mathrm{max} \mathcal{J}_\mathrm{cen}) (\mathcal{S} \mathcal{D}_\mathrm{moy} \mathcal{J}_\mathrm{up})
    2 \checkmark \checkmark \checkmark \checkmark \checkmark
    3 {\LARGE \times} \checkmark \checkmark \checkmark \checkmark
    4 {\LARGE \times} \checkmark {\LARGE \times} \checkmark \checkmark
    10 {\LARGE \times} {\LARGE \times} {\LARGE \times} \checkmark \checkmark
    100 {\LARGE \times} {\LARGE \times} {\LARGE \times} \checkmark \checkmark

     | Show Table
    DownLoad: CSV

    In this benchmark, we want to investigate the accuracy of the scheme described in section 3.2, depending on the discretization of the diffusive and Joule terms. We consider the domain \Omega = [0;1]^2 . The simulations will be performed until the time T = 0.1 . The exact solution is defined for (x, y, t)\in \Omega \times [0;T] by:

    \begin{equation*} \theta_\mathrm{ex}(x, y, t) = \dfrac{1+t}{10\, \lambda \, \pi^2} \left(1, 5+\cos \pi x\right) \left( 1, 5+\cos \pi y\right), \end{equation*}

    with \lambda = 2 . In (3.3), a source term is added accordingly. For the velocity, two cases are considered:

    a) \mathbf{v} = \mathbf{0} ,

    b) \mathbf{v} defined by

    \begin{equation} \mathbf{v}(x, y) = \dfrac{1}{\lambda\, \pi^2}\begin{pmatrix} -\dfrac{\sin(\pi \, y)}{1, 5+\cos(\pi \, y)}\\ \dfrac{\sin(\pi \, x)}{1, 5+\cos(\pi \, x)} \end{pmatrix}. \end{equation} (4.1)

    Here, Dirichlet conditions are imposed on all the boundaries, so that \Gamma_D = \Gamma . The temperature error in L^\infty (0, T; L^2 (\Omega)) is plotted in Figure 4 as a function of the mesh size h , in log-log scale, for each scheme. We notice that without the convective term (case a)), the centered schemes (\mathcal{S} \mathcal{D}_\mathrm{moy} \mathcal{J}_\mathrm{cen}) and (\mathcal{S} \mathcal{D}_\mathrm{moy} \mathcal{J}_\mathrm{EGH}) converge at order two, whereas the others are only at order one. Thus, the upwind choice in the diffusion term (schemes (\mathcal{S} \mathcal{D}_\mathrm{max} \mathcal{J}_\mathrm{cen}) and (\mathcal{S} \mathcal{D}_\mathrm{max} \mathcal{J}_\mathrm{EGH}) ) or in the Joule term (scheme (\mathcal{S} \mathcal{D}_\mathrm{moy} \mathcal{J}_\mathrm{up}) degrades the rate of convergence to order one, but is necessary to obtain the maximum principle. Adding the convective term (case b)), the centered schemes (\mathcal{S} \mathcal{D}_\mathrm{moy} \mathcal{J}_\mathrm{cen}) and (\mathcal{S} \mathcal{D}_\mathrm{moy} \mathcal{J}_\mathrm{EGH}) converge at order 3/2. This decrease of convergence rate can be explained by the upwind treatment of the convective term in order to ensure the stability.

    Figure 4.  Errors in L^\infty(0, T;L^2(\Omega)) norm.

    We will now validate the scheme (\mathcal{S} \mathcal{D}_\mathrm{max} \mathcal{J}_\mathrm{cen}) by coupling the temperature equation with the velocity one on the benchmark introduced in [1,15,29,31] and used in [7] (slightly adapted because of the choice of the model (2.2)). We consider a square cavity \Omega = [0, 1]^2 containing a calorifically perfect gas, see Figure 5. The gas is initially at rest with uniform temperature:

    \begin{equation*} \mathbf{u}_0 = \mathbf{0} \text{ and } \theta_0 = 0.5. \end{equation*}
    Figure 5.  The differentially heated cavity.

    Note that the temperature has been scaled to be between 0 and 1. A temperature of \theta_h = \theta_0 (1+\varepsilon) (respectively \theta_c = \theta_0(1-\varepsilon) ) is imposed on the left (respectively right) wall with \varepsilon = 0.01 as in [29]. For this small temperature amplitude, the thermodynamic pressure can be approximated by a constant, where the author verifies numerically that P(T) = P_0 with an accuracy of 10^{-5} ). The horizontal walls are insulated. Denoting by \Gamma_N = [0, 1] \times \{0, 1\} , we thus have:

    \begin{eqnarray*} \nabla \theta(\cdot, t) \cdot \mathbf{n}|_{\Gamma_{N}}& = &0, \quad \forall t \in [0;T]. \end{eqnarray*}

    On all walls, the no-slip condition is imposed for the physical velocity \mathbf{u} , which gives for the solenoidal one:

    \begin{array}{l} & \mathbf{v}( \textbf{x}, t) = \mathbf{0}, \quad \forall \textbf{x} \in \Gamma_N, \quad \forall t \in [0;T], \\ & \mathbf{v}( \textbf{x}, t) = \lambda \nabla \theta( \textbf{x}, t), \quad \forall \textbf{x} \in \Gamma_D, \quad \forall t \in [0;T]. \end{array}

    We set \lambda = 4, 76 \cdot 10^{-2} , which corresponds to a Rayleigh number of 10^{-5} , as it is the case in [31].

    The time iterations are performed until the numerical steady state is reached, i.e. the relative errors for the solenoidal velocity and the temperature are less than 10^{-10} . The steady state is obtained approximatively at T = 100 , using for instance a mesh \mathcal T composed by 3584 triangles (corresponding to h = 1.8 \cdot10^{-2} ) and a time step \Delta t of the order of 10^{-2} . We represent in Figure 6 the streamlines of the velocity field and the contour lines of the temperature at steady state. The solutions obtained are close to the ones given in Figures 4 and 5 of [29]. We also verify that the maximum principle for the temperature is always respected.

    Figure 6.  Stationnary solution. (a) Velocity, (b) Temperature.

    Note that even though we have to solve a global optimization problem in order to obtain the fluxes used in the finite volume scheme, its cost is negligible. Indeed, the matrix of the linear system (3.33) is assembled a single time before the time loop. On the contrary, some matrices in the finite element step must be assembled at each time step. Note moreover that the cost of Newton's iterations for the temperature equation resolution is also negligible. Indeed, only two or three iterations are necessary in order to obtain the solution with an accuracy of 10^{-5} . With this choice, approximatively only 10% of the overall computation time is devoted to the resolution of the temperature equation. This ratio in the computation cost is quite the same when we consider more coarse or more fine meshes.

    In this work we propose some finite volume schemes for the resolution of an unsteady convection-diffusion equation involving a Joule term. Several variants are investigated, depending on the way to discretize the diffusion term as well as the Joule one. A first main point is that two of these schemes verify the discrete maximum principle without any restriction on the data. Such schemes allow us to define a combined finite volume - finite element scheme for a low-Mach system, where the temperature is computed by the finite volume scheme whereas the velocity and pressure are approximated by a finite element one. The second point is that the finite volume velocity field, used for the convective term in the temperature equation, is computed from the finite element one by the resolution of a discrete least-mean-squares problem to ensure the local free divergence constraint. The numerical results illustrate the properties of the different schemes and confirm the relevance of the approach. The question of the convergence remains to be investigated, and will be addressed in a future work.

    This work was supported in part by the Labex CEMPI (ANR-11-LABX-0007-01). The authors gratefully acknowledge Clément Cancès, Claire Chainais-Hillairet and Benoit Merlet for fruitful discussions about it.

    The authors declare no conflicts of interest in this paper.



    [1] Y. Wang, Y. Zhang, P. Wang, X. Fu, W. Lin, Circular RNAs in renal cell carcinoma: implications for tumorigenesis, diagnosis, and therapy, Mol. Cancer, 19 (2020), 149. https://doi.org/10.1186/s12943-020-01266-7 doi: 10.1186/s12943-020-01266-7
    [2] H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin., 71 (2021), 209–249. https://doi.org/10.3322/caac.21660 doi: 10.3322/caac.21660
    [3] M. He, F. Hu, TF-RBP-AS Triplet analysis reveals the mechanisms of aberrant alternative splicing events in kidney cancer: implications for their possible clinical use as prognostic and therapeutic biomarkers, Int. J. Mol. Sci., 22 (2021), 8789. https://doi.org/10.3390/ijms22168789 doi: 10.3390/ijms22168789
    [4] A. Znaor, J. Lortet-Tieulent, M. Laversanne, A. Jemal, F. Bray, International variations and trends in renal cell carcinoma incidence and mortality, Eur. Urol., 67 (2015), 519–530. https://doi.org/10.1016/j.eururo.2014.10.002 doi: 10.1016/j.eururo.2014.10.002
    [5] Z. Sun, C. Jing, X. Guo, M. Zhang, F. Kong, Z. Wang, et al., Comprehensive analysis of the immune infiltrates of pyroptosis in kidney renal clear cell carcinoma, Front. Oncol., 11 (2021), 716854. https://doi.org/10.3389/fonc.2021.716854 doi: 10.3389/fonc.2021.716854
    [6] X. Mao, J. Xu, W. Wang, C. Liang, J. Hua, J. Liu, et al., Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives, Mol. Cancer, 20 (2021), 131. https://doi.org/10.1186/s12943-021-01428-1 doi: 10.1186/s12943-021-01428-1
    [7] L. F. S. Patterson, S. A. Vardhana, Metabolic regulation of the cancer-immunity cycle, Trends Immunol., 42 (2021), 975–993. https://doi.org/10.1016/j.it.2021.09.002 doi: 10.1016/j.it.2021.09.002
    [8] Y. Senbabaoglu, R. S. Gejman, A. G. Winer, M. Liu, E. M. Van Allen, G. de Velasco, et al., Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures, Genome Biol., 17 (2016), 231. https://doi.org/10.1186/s13059-016-1092-z doi: 10.1186/s13059-016-1092-z
    [9] B. Wang, D. Chen, H. Hua, TBC1D3 family is a prognostic biomarker and correlates with immune infiltration in kidney renal clear cell carcinoma, Mol. Ther. Oncolytics, 22 (2021), 528–538. https://doi.org/10.1016/j.omto.2021.06.014 doi: 10.1016/j.omto.2021.06.014
    [10] G. Liao, P. Wang, Y. Wang, Identification of the prognosis value and potential mechanism of immune checkpoints in renal clear cell carcinoma microenvironment, Front. Oncol., 11 (2021), 720125. https://doi.org/10.3389/fonc.2021.720125 doi: 10.3389/fonc.2021.720125
    [11] A. D. Janiszewska, S. Poletajew, A. Wasiutyński, Reviews Spontaneous regression of renal cell carcinoma, Współczesna Onkologia, 2 (2013), 123–127. https://doi.org/10.5114/wo.2013.34613 doi: 10.5114/wo.2013.34613
    [12] B. A. Inman, M. R. Harrison, D. J. George, Novel immunotherapeutic strategies in development for renal cell carcinoma, Eur, Urol, , 63 (2013), 881–889. https://doi.org/10.1016/j.eururo.2012.10.006 doi: 10.1016/j.eururo.2012.10.006
    [13] A. Kulkarni, M. T. Chang, J. H. A. Vissers, A. Dey, K. F. Harvey, The Hippo pathway as a driver of select human cancers, Trends Cancer, 6 (2020), 781–796. https://doi.org/10.1016/j.trecan.2020.04.004 doi: 10.1016/j.trecan.2020.04.004
    [14] Y. Zheng, D. Pan, The hippo signaling pathway in development and disease, Dev. Cell, 50 (2019), 264–282. https://doi.org/10.1016/j.devcel.2019.06.003 doi: 10.1016/j.devcel.2019.06.003
    [15] M. Moloudizargari, M. H. Asghari, S. F. Nabavi, D. Gulei, I. Berindan-Neagoe, A. Bishayee, et al., Targeting Hippo signaling pathway by phytochemicals in cancer therapy, Semin. Cancer Biol., 80 (2020), 183–194. https://doi.org/10.1016/j.semcancer.2020.05.005 doi: 10.1016/j.semcancer.2020.05.005
    [16] F. Reggiani, G. Gobbi, A. Ciarrocchi, V. Sancisi, YAP and TAZ are not identical twins, Trends Biochem. Sci., 46 (2021), 154–168. https://doi.org/10.1016/j.tibs.2020.08.012 doi: 10.1016/j.tibs.2020.08.012
    [17] H. Zhang, C. Y. Liu, Z. Y. Zha, B. Zhao, J. Yao, S. Zhao, et al., TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition, J. Biol. Chem., 284 (2009), 13355–13362. https://doi.org/10.1074/jbc.M900843200 doi: 10.1074/jbc.M900843200
    [18] B. Zhao, X. Ye, J. Yu, L. Li, W. Li, S. Li, et al., TEAD mediates YAP-dependent gene induction and growth control, Genes Dev., 22 (2008), 1962–1971. https://doi.org/10.1101/gad.1664408 doi: 10.1101/gad.1664408
    [19] M. Murakami, J. Tominaga, R. Makita, Y. Uchijima, Y. Kurihara, O. Nakagawa, et al., Transcriptional activity of Pax3 is co-activated by TAZ, Biochem. Biophys. Res. Commun., 339 (2006), 533–539. https://doi.org/10.1016/j.bbrc.2005.10.214 doi: 10.1016/j.bbrc.2005.10.214
    [20] Z. Miskolczi, M. P. Smith, E. J. Rowling, J. Ferguson, J. Barriuso, C. Wellbrock, et al., Collagen abundance controls melanoma phenotypes through lineage-specific microenvironment sensing, Oncogene, 37 (2018), 3166–3182. https://doi.org/10.1038/s41388-018-0209-0 doi: 10.1038/s41388-018-0209-0
    [21] M. Murakami, M. Nakagawa, E. Olson, O. Nakagawa, A WW domain protein TAZ is a critical coactivator for TBX5 a transcription factor implicated in Holt Oram syndrome, Proc. Natl. Acad. Sci., 102 (2005), 18034–18039. https://doi.org/10.1073/pnas.0509109102 doi: 10.1073/pnas.0509109102
    [22] J. Rosenbluh, D. Nijhawan, A. G. Cox, X. Li, J. T. Neal, E. J. Schafer, et al., beta-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis, Cell, 151 (2012), 1457–1473. https://doi.org/10.1016/j.cell.2012.11.026 doi: 10.1016/j.cell.2012.11.026
    [23] F. Zanconato, M. Forcato, G. Battilana, L. Azzolin, E. Quaranta, B. Bodega, et al., Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth, Nat. Cell Biol., 17 (2015), 1218–1227. https://doi.org/10.1038/ncb3216 doi: 10.1038/ncb3216
    [24] H. L. Li, Q. Y. Li, M. J. Jin, C. F. Lu, Z. Y. Mu, W. Y. Xu, et al., A review: hippo signaling pathway promotes tumor invasion and metastasis by regulating target gene expression, J. Cancer Res. Clin. Oncol., 147 (2021), 1569–1585. https://doi.org/10.1007/s00432-021-03604-8 doi: 10.1007/s00432-021-03604-8
    [25] G. D. Chiara, F. Gervasoni, M. Fakiola, C. Godano, C. D'Oria, L. Azzolin, et al., Epigenomic landscape of human colorectal cancer unveils an aberrant core of pan-cancer enhancers orchestrated by YAP/TAZ, Nat. Commun., 12 (2021), 2340. https://doi.org/10.1038/s41467-021-22544-y doi: 10.1038/s41467-021-22544-y
    [26] Y. Wang, X. Xu, D. Maglic, M. T. Dill, K. Mojumdar, P. K. S. Ng, et al., Comprehensive molecular characterization of the hippo signaling pathway in cancer, Cell Rep., 25 (2018), 1304–1317. https://doi.org/10.1016/j.celrep.2018.10.001 doi: 10.1016/j.celrep.2018.10.001
    [27] W. H. Yang, C. K. C. Ding, T. Sun, G. Rupprecht, C. C. Lin, D. Hsu, et al., The hippo pathway effector taz regulates ferroptosis in renal cell carcinoma, Cell Rep., 28 (2019), 2501–2508. https://doi.org/10.1016/j.celrep.2019.07.107 doi: 10.1016/j.celrep.2019.07.107
    [28] W. H. Yang, Z. Huang, J. Wu, C. K. C. Ding, S. K. Murphy, J. T. Chi, A TAZ-ANGPTL4-NOX2 axis regulates ferroptotic cell death and chemoresistance in epithelial ovarian cancer, Mol. Cancer Res., 18 (2020), 79–90. https://doi.org/10.1158/1541-7786.MCR-19-0691 doi: 10.1158/1541-7786.MCR-19-0691
    [29] W. H. Yang, C. C. Lin, J. Wu, P. Y. Chao, K. Chen, P. H. Chen, et al., The hippo pathway effector YAP promotes ferroptosis via the E3 Ligase SKP2, Mol. Cancer Res., 19 (2021), 1005–1014. https://doi.org/10.1158/1541-7786.MCR-20-0534 doi: 10.1158/1541-7786.MCR-20-0534
    [30] M. Pavel, M. Renna, S. J. Park, F. M. Menzies, T. Ricketts, J. Füllgrabe, et al., Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis, Nat. Commun., 9 (2018), 2961. https://doi.org/10.1038/s41467-018-05388-x doi: 10.1038/s41467-018-05388-x
    [31] M. Toth, L. Wehling, L. Thiess, F. Rose, J. Schmitt, S. M. Weiler, et al., Co-expression of YAP and TAZ associates with chromosomal instability in human cholangiocarcinoma, BMC Cancer, 21 (2021), 1079. https://doi.org/10.1186/s12885-021-08794-5 doi: 10.1186/s12885-021-08794-5
    [32] S. M. White, M. L. Avantaggiati, I. Nemazanyy, C. Di Poto, Y. Yang, M. Pende, et al., YAP/TAZ inhibition induces metabolic and signaling rewiring resulting in targetable vulnerabilities in NF2-deficient tumor cells, Dev. Cell, 49 (2019), 425–443. https://doi.org/10.1016/j.devcel.2019.04.014 doi: 10.1016/j.devcel.2019.04.014
    [33] S. W. Zhang, N. Zhang, N. Wang, Role of COL3A1 and POSTN on pathologic stages of esophageal cancer, Technol. Cancer Res. Treat., 19 (2020), 1533033820977489. https://doi.org/10.1177/1533033820977489 doi: 10.1177/1533033820977489
    [34] D. Xu, Y. Xu, Y. Lv, F. Wu, Y. Liu, M. Zhu, et al., Identification of four pathological stage-relevant genes in association with progression and prognosis in clear cell renal cell carcinoma by integrated bioinformatics analysis, Biomed. Res. Int., 2020 (2020), 2137319. https://doi.org/10.1155/2020/2137319 doi: 10.1155/2020/2137319
    [35] S. Bai, L. Chen, Y. Yan, X. Wang, A. Jiang, R. Li, et al., Identification of hypoxia-immune-related gene signatures and construction of a prognostic model in kidney renal clear cell carcinoma, Front. Cell Dev. Biol., 9 (2021), 796156. https://doi.org/10.3389/fcell.2021.796156 doi: 10.3389/fcell.2021.796156
    [36] S. Sun, W. Mao, L. Wan, K. Pan, L. Deng, L. Zhang, et al., Metastatic immune-related genes for affecting prognosis and immune response in renal clear cell carcinoma, Front. Mol. Biosci., 8 (2021), 794326. https://doi.org/10.3389/fmolb.2021.794326 doi: 10.3389/fmolb.2021.794326
    [37] J. Jing, J. Sun, Y. Wu, N. Zhang, C. Liu, S. Chen, et al., AQP9 is a prognostic factor for kidney cancer and a promising indicator for M2 TAM polarization and CD8+ T-cell recruitment, Front. Oncol., 11 (2021), 770565. https://doi.org/10.3389/fonc.2021.770565 doi: 10.3389/fonc.2021.770565
    [38] J. Song, Y. D. Liu, J. Su, D. Yuan, F. Sun, J. Zhu, Systematic analysis of alternative splicing signature unveils prognostic predictor for kidney renal clear cell carcinoma, J. Cell Physiol., 234 (2019), 22753–22764. https://doi.org/10.1002/jcp.28840 doi: 10.1002/jcp.28840
    [39] G. Du, X. Yan, Z. Chen, R. J. Zhang, K. Tuoheti, X. J. Bai, et al., Identification of transforming growth factor beta induced (TGFBI) as an immune-related prognostic factor in clear cell renal cell carcinoma (ccRCC), Aging (Albany NY), 12 (2020), 8484–8505. https://doi.org/10.18632/aging.103153 doi: 10.18632/aging.103153
    [40] G. Chen, Y. Wang, L. Wang, W. Xu, Identifying prognostic biomarkers based on aberrant DNA methylation in kidney renal clear cell carcinoma, Oncotarget, 8 (2017), 5268–5280. https://doi.org/10.18632/oncotarget.14134 doi: 10.18632/oncotarget.14134
    [41] G. Lin, Q. Feng, F. Zhan, F. Yang, Y. Niu, G. Li, Generation and analysis of pyroptosis-based and immune-based signatures for kidney renal clear cell carcinoma patients, and cell experiment, Front. Genet., 13 (2022), 809794. https://doi.org/10.3389/fgene.2022.809794 doi: 10.3389/fgene.2022.809794
    [42] X. L. Xing, Y. Liu, J. Liu, H. Zhou, H. Zhang, Q. Zuo, et al., Comprehensive analysis of ferroptosis- and immune-related signatures to improve the prognosis and diagnosis of kidney renal clear cell carcinoma, Front. Immunol., 13 (2022), 851312. https://doi.org/10.3389/fimmu.2022.851312 doi: 10.3389/fimmu.2022.851312
    [43] Y. Hong, M. Lin, D. Ou, Z. Huang, P. Shen, A novel ferroptosis-related 12-gene signature predicts clinical prognosis and reveals immune relevancy in clear cell renal cell carcinoma, BMC Cancer, 21 (2021), 831. https://doi.org/10.1186/s12885-021-08559-0 doi: 10.1186/s12885-021-08559-0
    [44] Y. Zhang, M. Tang, Q. Guo, H. Xu, Z. Yang, D. Li, The value of erlotinib related target molecules in kidney renal cell carcinoma via bioinformatics analysis, Gene, 816 (2022), 146173. https://doi.org/10.1016/j.gene.2021.146173 doi: 10.1016/j.gene.2021.146173
    [45] Y. L. Wang, H. Liu, L. L. Wan, K. H. Pan, J. X. Ni, Q. Hu, et al., Characterization and function of biomarkers in sunitinib-resistant renal carcinoma cells, Gene, 832 (2022), 146514. https://doi.org/10.1016/j.gene.2022.146514 doi: 10.1016/j.gene.2022.146514
    [46] X. Che, X. Qi, Y. Xu, Q. Wang, G. Wu, Using genomic and transcriptome analyses to identify the role of the oxidative stress pathway in renal clear cell carcinoma and its potential therapeutic significance, Oxid. Med. Cell Longev., 2021 (2021), 5561124. https://doi.org/10.1155/2021/5561124 doi: 10.1155/2021/5561124
    [47] X. Che, X. Qi, Y. Xu, Q. Wang, G. Wu, Genomic and transcriptome analysis to identify the role of the mtor pathway in kidney renal clear cell carcinoma and its potential therapeutic significance, Oxid. Med. Cell Longev., 2021 (2021), 6613151. https://doi.org/10.1155/2021/6613151 doi: 10.1155/2021/6613151
    [48] G. Tan, Z. Xuan, Z. Li, S. Huang, G. Chen, Y. Wu, et al., The critical role of BAP1 mutation in the prognosis and treatment selection of kidney renal clear cell carcinoma, Transl. Androl. Urol., 9 (2020), 1725–1734. https://doi.org/10.21037/tau-20-1079 doi: 10.21037/tau-20-1079
    [49] M. Huang, T. Zhang, Z. Y. Yao, C. Xing, Q. Wu, Y. W. Liu, et al., MicroRNA related prognosis biomarkers from high throughput sequencing data of kidney renal clear cell carcinoma, BMC Med. Genomics, 14 (2021), 72. https://doi.org/10.1186/s12920-021-00932-z doi: 10.1186/s12920-021-00932-z
    [50] L. Peng, Z. Chen, Y. Chen, X. Wang, N. Tang, MIR155HG is a prognostic biomarker and associated with immune infiltration and immune checkpoint molecules expression in multiple cancers, Cancer Med., 8 (2019), 7161–7173. https://doi.org/10.1002/cam4.2583 doi: 10.1002/cam4.2583
    [51] D. Zhang, S. Zeng, X. Hu, Identification of a three-long noncoding RNA prognostic model involved competitive endogenous RNA in kidney renal clear cell carcinoma, Cancer Cell Int., 20 (2020), 319. https://doi.org/10.1186/s12935-020-01423-4 doi: 10.1186/s12935-020-01423-4
    [52] S. Khadirnaikar, P. Kumar, S. N. Pandi, R. Malik, S. M. Dhanasekaran, S. K. Shukla, Immune associated LncRNAs identify novel prognostic subtypes of renal clear cell carcinoma, Mol. Carcinog., 58 (2019), 544–553. https://doi.org/10.1002/mc.22949 doi: 10.1002/mc.22949
    [53] E. Clough, T. Barrett, The gene expression omnibus database, Methods Mol. Biol., 1418 (2016), 93–110. https://doi.org/10.1007/978-1-4939-3578-9_5 doi: 10.1007/978-1-4939-3578-9_5
    [54] M. E. Ritchie, B. Phipson, D. I. Wu, Y. Hu, C. W. Law, W. Shi, et al., Limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res., 43 (2015), e47. https://doi.org/10.1093/nar/gkv007 doi: 10.1093/nar/gkv007
    [55] Z. Jiang, M. Shao, X. Dai, Z. Pan, D. Liu, Identification of diagnostic biomarkers in systemic lupus erythematosus based on bioinformatics analysis and machine learning, Front. Genet., 13 (2022), 865559. https://doi.org/10.3389/fgene.2022.865559 doi: 10.3389/fgene.2022.865559
    [56] T. Wu, E. Hu, S. Xu, M. Chen, P. Guo, Z. Dai, et al., clusterProfiler 4.0: A universal enrichment tool for interpreting omics data, Innovation, 2 (2021), 100141. https://doi.org/10.1016/j.xinn.2021.100141 doi: 10.1016/j.xinn.2021.100141
    [57] Gene Ontology Consortium, The Gene Ontology (GO) database and informatics resource, Nucleic Acids Res., 32 (2004), D258–D261. https://doi.org/10.1093/nar/gkh036 doi: 10.1093/nar/gkh036
    [58] D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, et al., STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets, Nucleic Acids Res., 47 (2019), D607–D613. https://doi.org/10.1093/nar/gky1131 doi: 10.1093/nar/gky1131
    [59] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res., 13 (2003), 2498–2504. https://doi.org/10.1101/gr.1239303 doi: 10.1101/gr.1239303
    [60] W. Lin, Y. Tang, M. Zhang, B. Liang, M. Wang, L. Zha, et al., Integrated bioinformatic analysis reveals txnrd1 as a novel biomarker and potential therapeutic target in idiopathic pulmonary arterial hypertension, Front. Med., 9 (2022), 894584. https://doi.org/10.3389/fmed.2022.894584 doi: 10.3389/fmed.2022.894584
    [61] A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, et al., Gene set enrichment analysis A knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci., 102 (2005), 15545–15550. https://doi.org/10.1073/pnas.0506580102 doi: 10.1073/pnas.0506580102
    [62] Z. Zhuang, D. Li, M. Jiang, Y. Wang, Q. Cao, S. Li, et al., An integrative bioinformatics analysis of the potential mechanisms involved in propofol affecting hippocampal neuronal cells, Comput. Intell. Neurosci., 2022 (2022), 4911773. https://doi.org/10.1155/2022/4911773 doi: 10.1155/2022/4911773
    [63] F. Ponten, K. Jirstrom, M. Uhlen, The Human Protein Atlas--a tool for pathology, J. Pathol., 216 (2008), 387–393. https://doi.org/10.1002/path.2440 doi: 10.1002/path.2440
    [64] D. S. Chandrashekar, B. Bashel, S. A. H. Balasubramanya, C. J. Creighton, I. Ponce-Rodriguez, B. V. Chakravarthi, et al., UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses, Neoplasia, 19 (2017), 649–658. https://doi.org/10.1016/j.neo.2017.05.002 doi: 10.1016/j.neo.2017.05.002
    [65] Z. Tang, C. Li, B. Kang, G. Gao, C. Li, Z. Zhang, GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses, Nucleic Acids Res., 45 (2017), W98–W102. https://doi.org/10.1093/nar/gkx247 doi: 10.1093/nar/gkx247
    [66] Y. C. Yang, M. Y. Zhang, J. Y. Liu, Y. Y. Jiang, X. L. Ji, Y. Q. Qu, Identification of ferroptosis-related hub genes and their association with immune infiltration in chronic obstructive pulmonary disease by bioinformatics analysis, Int. J. Chron. Obstruct. Pulmon. Dis., 17 (2022), 1219–1236. https://doi.org/10.2147/COPD.S348569 doi: 10.2147/COPD.S348569
    [67] T. Li, J. Fu, Z. Zeng, D. Cohen, J. Li, Q. Chen, et al., TIMER2.0 for analysis of tumor-infiltrating immune cells, Nucleic Acids Res, 48 (2020), W509–W514. https://doi.org/10.1093/nar/gkaa407 doi: 10.1093/nar/gkaa407
    [68] B. A. Teicher, TGFbeta-directed therapeutics: 2020, Pharmacol. Ther., 217 (2021), 107666. https://doi.org/10.1016/j.pharmthera.2020.107666 doi: 10.1016/j.pharmthera.2020.107666
    [69] A. E. Vilgelm, A. Richmond, Chemokines modulate immune surveillance in tumorigenesis, metastasis, and response to immunotherapy, Front. Immunol., 10 (2019), 333. https://doi.org/10.3389/fimmu.2019.00333 doi: 10.3389/fimmu.2019.00333
    [70] R. Wang, B. Zheng, H. Liu, X. Wan, Long non-coding RNA PCAT1 drives clear cell renal cell carcinoma by upregulating YAP via sponging miR-656 and miR-539, Cell Cycle, 19 (2020), 1122–1131. https://doi.org/10.1080/15384101.2020.1748949 doi: 10.1080/15384101.2020.1748949
    [71] S. Nagashima, J. Maruyama, K. Honda, Y. Kondoh, H. Osada, M. Nawa, et al., CSE1L promotes nuclear accumulation of transcriptional coactivator TAZ and enhances invasiveness of human cancer cells, J. Biol. Chem., 297 (2021), 100803. https://doi.org/10.1016/j.jbc.2021.100803 doi: 10.1016/j.jbc.2021.100803
    [72] P. Chen, Y. Duan, X. Lu, L. Chen, W. Zhang, H. Wang, et al., RB1CC1 functions as a tumor-suppressing gene in renal cell carcinoma via suppression of PYK2 activity and disruption of TAZ-mediated PDL1 transcription activation, Cancer Immunol. Immunother., 70 (2021), 3261–3275. https://doi.org/10.1007/s00262-021-02913-8 doi: 10.1007/s00262-021-02913-8
    [73] S. Xu, H. Zhang, Y. Chong, B. Guan, P. Guo, YAP promotes VEGFA expression and tumor angiogenesis though Gli2 in human renal cell carcinoma, Arch. Med. Res., 50 (2019), 225–233. https://doi.org/10.1016/j.arcmed.2019.08.010 doi: 10.1016/j.arcmed.2019.08.010
    [74] P. Carter, U. Schnell, C. Chaney, B. Tong, X. Pan, J. Ye, et al., Deletion of Lats1/2 in adult kidney epithelia leads to renal cell carcinoma, J. Clin. Invest., 131 (2021), e144108. https://doi.org/10.1172/JCI144108 doi: 10.1172/JCI144108
    [75] S. Xu, H. Zhang, T. Liu, Z. Wang, W. Yang, T. Hou, et al., 6-Gingerol suppresses tumor cell metastasis by increasing YAP(ser127) phosphorylation in renal cell carcinoma, J. Biochem. Mol. Toxicol., 35 (2021), e22609. https://doi.org/10.1002/jbt.22609 doi: 10.1002/jbt.22609
    [76] S. Xu, Z. Yang, Y. Fan, B. Guan, J. Jia, Y. Gao, et al., Curcumin enhances temsirolimus-induced apoptosis in human renal carcinoma cells through upregulation of YAP/p53, Oncol. Lett., 12 (2016), 4999–5006. https://doi.org/10.3892/ol.2016.5376 doi: 10.3892/ol.2016.5376
    [77] M. D. Robinson, D. J. McCarthy, G. K. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, 26 (2010), 139–140. https://doi.org/10.1093/bioinformatics/btp616 doi: 10.1093/bioinformatics/btp616
    [78] S. Anders, W. Huber, Differential expression analysis for sequence count data, Genome Biol, , 11 (2010), R106. https://doi.org/10.1186/gb-2010-11-10-r106 doi: 10.1186/gb-2010-11-10-r106
    [79] M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol., 15 (2014), 550. https://doi.org/10.1186/s13059-014-0550-8 doi: 10.1186/s13059-014-0550-8
    [80] D. W. Huang, B. T. Sherman, R. A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc., 4 (2009), 44–57. https://doi.org/10.1038/nprot.2008.211 doi: 10.1038/nprot.2008.211
    [81] C. Xie, X. Mao, J. Huang, Y. Ding, J. Wu, S. Dong, et al., KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases, Nucleic Acids Res., 39 (2011), W316–W322. https://doi.org/10.1093/nar/gkr483 doi: 10.1093/nar/gkr483
    [82] Y. Zhou, B. Zhou, L. Pache, M. Chang, A. H. Khodabakhshi, O. Tanaseichuk, et al., Metascape provides a biologist-oriented resource for the analysis of systems-level datasets, Nat. Commun., 10 (2019), 1523. https://doi.org/10.1038/s41467-019-09234-6 doi: 10.1038/s41467-019-09234-6
    [83] Y. Liao, J. Wang, E. J. Jaehnig, Z. Shi, B. Zhang, WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs, Nucleic Acids Res., 47 (2019), W199–W205. https://doi.org/10.1093/nar/gkz401 doi: 10.1093/nar/gkz401
    [84] M. D. Paraskevopoulou, G. Georgakilas, N. Kostoulas, M. Reczko, M. Maragkakis, T. M. Dalamagas, et al., DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs, Nucleic Acids Res., 41 (2013), D239–D245. https://doi.org/10.1093/nar/gks1246 doi: 10.1093/nar/gks1246
    [85] S. D. Hsu, F. M. Lin, W. Y. Wu, C. Liang, W. C. Huang, W. L. Chan, et al., miRTarBase: a database curates experimentally validated microRNA–target interactions, Nucleic Acids Res., 39 (2011), D163–D169. https://doi.org/10.1093/nar/gkq1107 doi: 10.1093/nar/gkq1107
    [86] J. H. Yang, J. H. Li, P. Shao, H. Zhou, Y. Q. Chen, starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data, Nucleic Acids Res., 39 (2011), D202–D209. https://doi.org/10.1093/nar/gkq1056 doi: 10.1093/nar/gkq1056
    [87] W. Liu, Y. Jiang, L. Peng, X. Sun, W. Gan, Q. Zhao, et al., Inferring gene regulatory networks using the improved markov blanket discovery algorithm, Interdiscip. Sci., 14 (2022), 168–181. https://doi.org/10.1007/s12539-021-00478-9 doi: 10.1007/s12539-021-00478-9
    [88] L. Zhang, P. Yang, H. Feng, Q. Zhao, H. Liu, Using Network Distance Analysis to Predict lncRNA-miRNA Interactions, Interdiscip. Sci., 13 (2021), 535–545. https://doi.org/10.1007/s12539-021-00458-z doi: 10.1007/s12539-021-00458-z
    [89] H. Liu, G. Ren, H. Chen, Q. Liu, Y. Yang, Q. Zhao, Predicting lncRNA–miRNA interactions based on logistic matrix factorization with neighborhood regularized, Knowledge Based Syst., 191 (2020), 105261. https://doi.org/10.1016/j.knosys.2019.105261 doi: 10.1016/j.knosys.2019.105261
    [90] W. Liu, H. Lin, L. Huang, L. Peng, T. Tang, Q. Zhao, et al., Identification of miRNA-disease associations via deep forest ensemble learning based on autoencoder, Brief Bioinform., 23 (2022), bbac104. https://doi.org/10.1093/bib/bbac104 doi: 10.1093/bib/bbac104
    [91] C. C. Wang, C. D. Han, Q. Zhao, X. Chen, Circular RNAs and complex diseases: from experimental results to computational models, Brief Bioinform., 22 (2021), bbab286. https://doi.org/10.1093/bib/bbab286 doi: 10.1093/bib/bbab286
    [92] A. Reustle, M. Di Marco, C. Meyerhoff, A. Nelde, J. S. Walz, S. Winter, et al., Integrative -omics and HLA-ligandomics analysis to identify novel drug targets for ccRCC immunotherapy, Genome Med., 12 (2020), 32. https://doi.org/10.1186/s13073-020-00731-8 doi: 10.1186/s13073-020-00731-8
    [93] K. Dong, W. Chen, X. Pan, H. Wang, Y. Sun, C. Qian, et al., FCER1G positively relates to macrophage infiltration in clear cell renal cell carcinoma and contributes to unfavorable prognosis by regulating tumor immunity, BMC Cancer, 22 (2022), 140. https://doi.org/10.1186/s12885-022-09251-7 doi: 10.1186/s12885-022-09251-7
    [94] Y. Chen, F. He, R. Wang, M. Yao, Y. Li, D. Guo, et al., NCF1/2/4 are prognostic biomarkers related to the immune infiltration of kidney renal clear cell carcinoma, Biomed. Res. Int., 2021 (2021), 5954036. https://doi.org/10.1155/2021/5954036 doi: 10.1155/2021/5954036
    [95] B. G. Kim, E. Malek, S. H. Choi, J. J. Ignatz-Hoover, J. J. Driscoll, Novel therapies emerging in oncology to target the TGF-beta pathway, J. Hematol. Oncol., 14 (2021), 55. https://doi.org/10.1186/s13045-021-01053-x doi: 10.1186/s13045-021-01053-x
    [96] J. D. Richter, X. Zhao, The molecular biology of FMRP: new insights into fragile X syndrome, Nat. Rev. Neurosci., 22 (2021), 209–222. https://doi.org/10.1038/s41583-021-00432-0 doi: 10.1038/s41583-021-00432-0
    [97] Y. Laitman, L. Ries-Levavi, M. Berkensdadt, J. Korach, T. Perri, E. Pras, et al., FMR1 CGG allele length in Israeli BRCA1/BRCA2 mutation carriers and the general population display distinct distribution patterns, Genet. Res., 96 (2014), e11. https://doi.org/10.1017/S0016672314000147 doi: 10.1017/S0016672314000147
    [98] W. Li, L. Zhang, B. Guo, J. Deng, S. Wu, F. Li, et al., Exosomal FMR1-AS1 facilitates maintaining cancer stem-like cell dynamic equilibrium via TLR7/NFkappaB/c-Myc signaling in female esophageal carcinoma, Mol. Cancer, 18 (2019), 22. https://doi.org/10.1186/s12943-019-0949-7 doi: 10.1186/s12943-019-0949-7
    [99] Y. Jiang, Z. Wang, C. Ying, J. Hu, T. Zeng, L. Gao, FMR1/circCHAF1A/miR-211-5p/HOXC8 feedback loop regulates proliferation and tumorigenesis via MDM2-dependent p53 signaling in GSCs, Oncogene, 40 (2021), 4094–4110. https://doi.org/10.1038/s41388-021-01833-2 doi: 10.1038/s41388-021-01833-2
    [100] Z. Shen, B. Liu, B. Wu, H. Zhou, X. Wang, J. Cao, et al., FMRP regulates STAT3 mRNA localization to cellular protrusions and local translation to promote hepatocellular carcinoma metastasis, Commun. Biol., 4 (2021), 540. https://doi.org/10.1038/s42003-021-02071-8 doi: 10.1038/s42003-021-02071-8
    [101] Y. Higuchi, M. Ando, A. Yoshimura, S. Hakotani, Y. Koba, Y. Sakiyama, et al., Prevalence of fragile X-associated tremor/ataxia syndrome in patients with cerebellar ataxia in Japan, Cerebellum, (2021), 1–10. https://doi.org/10.1007/s12311-021-01323-x doi: 10.1007/s12311-021-01323-x
    [102] K. H. Yu, N. Palmer, K. Fox, L. Prock, K. D. Mandl, I. S. Kohane, et al., The phenotypical implications of immune dysregulation in fragile X syndrome, Eur. J. Neurol., 27 (2020), 590–593. https://doi.org/10.1111/ene.14146 doi: 10.1111/ene.14146
    [103] M. Careaga, D. Rose, F. Tassone, R. F. Berman, R. Hagerman, P. Ashwood, Immune dysregulation as a cause of autoinflammation in fragile X premutation carriers: link between FMRI CGG repeat number and decreased cytokine responses, PLoS One, 9 (2014), e94475. https://doi.org/10.1371/journal.pone.0094475 doi: 10.1371/journal.pone.0094475
    [104] S. L. Hodges, S. O. Nolan, L. A. Tomac, I. D. Muhammad, M. S. Binder, J. H. Taube, et al., Lipopolysaccharide-induced inflammation leads to acute elevations in pro-inflammatory cytokine expression in a mouse model of Fragile X syndrome, Physiol. Behav., 215 (2020), 112776. https://doi.org/10.1016/j.physbeh.2019.112776 doi: 10.1016/j.physbeh.2019.112776
    [105] S. L. Hodges, S. O. Nolan, J. H. Taube, J. N. Lugo, Adult Fmr1 knockout mice present with deficiencies in hippocampal interleukin-6 and tumor necrosis factor-alpha expression, Neuroreport, 28 (2017), 1246–1249. https://doi.org/10.1097/WNR.0000000000000905 doi: 10.1097/WNR.0000000000000905
  • This article has been cited by:

    1. Caterina Calgaro, Emmanuel Creusé, 2020, Chapter 37, 978-3-030-43650-6, 405, 10.1007/978-3-030-43651-3_37
    2. Marianne Bessemoulin-Chatard, Claire Chainais-Hillairet, Hélène Mathis, 2020, Chapter 5, 978-3-030-43650-6, 75, 10.1007/978-3-030-43651-3_5
    3. Marianne Bessemoulin-Chatard, Claire Chainais-Hillairet, Hélène Mathis, Analysis of numerical schemes for semiconductor energy-transport models, 2021, 168, 01689274, 143, 10.1016/j.apnum.2021.05.030
    4. Caterina Calgaro, Clément Cancès, Emmanuel Creusé, Discrete Gagliardo–Nirenberg inequality and application to the finite volume approximation of a convection–diffusion equation with a Joule effect term, 2024, 44, 0272-4979, 2394, 10.1093/imanum/drad063
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(13583) PDF downloads(195) Cited by(7)

Figures and Tables

Figures(10)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog