Research article Special Issues

Existence and stability of nonlinear discrete fractional initial value problems with application to vibrating eardrum


  • Received: 26 February 2021 Accepted: 20 April 2021 Published: 06 May 2021
  • It is well known that Newton's second law can be applied in various biological processes including the behavior of vibrating eardrums. In this work, we consider a nonlinear discrete fractional initial value problem as a model describing the dynamic of vibrating eardrum. We establish sufficient conditions for the existence, uniqueness, and Hyers-Ulam stability for the solutions of the proposed model. To examine the validity of our findings, a concrete example of forced eardrum equation along with numerical simulation is analyzed.

    Citation: George Maria Selvam, Jehad Alzabut, Vignesh Dhakshinamoorthy, Jagan Mohan Jonnalagadda, Kamaleldin Abodayeh. Existence and stability of nonlinear discrete fractional initial value problems with application to vibrating eardrum[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 3907-3921. doi: 10.3934/mbe.2021195

    Related Papers:

  • It is well known that Newton's second law can be applied in various biological processes including the behavior of vibrating eardrums. In this work, we consider a nonlinear discrete fractional initial value problem as a model describing the dynamic of vibrating eardrum. We establish sufficient conditions for the existence, uniqueness, and Hyers-Ulam stability for the solutions of the proposed model. To examine the validity of our findings, a concrete example of forced eardrum equation along with numerical simulation is analyzed.



    加载中


    [1] V. A. Dobrushkin, Applied Differential Equations with Boundary Value Problems, CRC Press, Boca Raton, 2017.
    [2] A. Mondol, R. Gupta, S. Das, T. Dutta, An insight into Newton's cooling law using fractional calculus, J. Appl. Phys., 123 (2018), 064901. doi: 10.1063/1.4998236
    [3] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier, 2006.
    [4] A. Pratap, R. Raja, J. Alzabut, J. Cao, G. Rajachakit, C. Huang, Mittag-Leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field, Math. Meth. Appl. Sci., 43 (2020), 6223–6253. doi: 10.1002/mma.6367
    [5] J. Dianavinnarasi, R. Raja, J. Alzabut, M. Niezabitowski, G. Selvam, O. O. Bagdasar, An LMI approach based mathematical model to control Aedes Aegypti mosquitoes population via biological control, Math. Probl. Eng., 2021 (2021), 5565949.
    [6] G. A. Anastassiou, Discrete fractional calculus and inequalities, preprint, arXiv: 0911.3370v1.
    [7] F. M. Atici, S. Seng$\ddot{u}$l, Modeling with fractional difference equations, J. Math. Anal. Appl., 369 (2010), 1–9. doi: 10.1016/j.jmaa.2010.02.009
    [8] F. M. Atici, P. W. Eloe, Two-point boundary value problems for finite fractional difference equations, J. Differ. Equ. Appl., 17 (2011), 445–456. doi: 10.1080/10236190903029241
    [9] F. M. Atici, P. W. Eloe, Initial value problems in discrete fractional calculus, Proc. Am. Math. Soc., 137 (2009), 981–989.
    [10] F. M. Atici, P. W. Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ., Spec. Ed. I, 3 (2009), 1–12.
    [11] C. S. Goodrich, A. C. Peterson, Discrete fractional calculus, Springer, Cham, 2015.
    [12] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Difference Equations, Wiley, New York, 1993.
    [13] J. Alzabut, T. Abdeljawad, D. Baleanu, Nonlinear delay fractional difference equations with applications on discrete fractional Lotka–Volterra competition model, J. Comput. Anal. Appl., 25 (2018), 889–898.
    [14] S. Kang, H. Chen, J. Guo, Existence of positive solutions for a system of Caputo fractional difference equations depending on parameters, Adv. Differ. Equ., 2015 (2015), 138. doi: 10.1186/s13662-015-0466-y
    [15] R. Dahal, D. Duncan, C. S. Goodrich, Systems of semipositone discrete fractional boundary value problems, J. Differ. Equ. Appl., 20 (2014), 473–491. doi: 10.1080/10236198.2013.856073
    [16] J. Alzabut, T. Abdeljawad, A generalized discrete fractional Gronwall's inequality and its application on the uniqueness of solutions for nonlinear delay fractional difference system, Appl. Anal. Discret. Math., 12 (2018), 036–048. doi: 10.2298/AADM1801036A
    [17] S. Djennoune, M. Bettayeb, U. Muhsen Al-Saggaf, Synchronization of fractional–order discrete–time chaotic systems by an exact delayed state reconstructor: Application to secure communication, Int. J. Appl. Math. Comput. Sci., 29 (2019), 179–194. doi: 10.2478/amcs-2019-0014
    [18] F. Chen, Fixed points and asymptotic stability of nonlinear fractional difference equations, Electron. J. Qual. Theory Differ. Equ., 39 (2011), 1–18.
    [19] F. Chen, Z. Liu, Asymptotic stability results for nonlinear fractional difference equations, J. Appl. Math., 2012 (2012), 879657.
    [20] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U S A., 1941 (1941), 222–224.
    [21] S. Ulam, Problems in Modern Mathematics, New York: Science Editions John Wiley & Sons, Inc., 1964.
    [22] A. U. K Niazi, J. Wei, M. U. Rehman, P. Denghao, Ulam-Hyers-Mittag-Leffler stability of nonlinear fractional neutral differential equations, Mat. Sb., 209 (2018), 1337–1350. doi: 10.1070/SM8958
    [23] J. R. Wang, Y. Zhang, Ulam-Hyers-Mittag-Leffler stability of fractional-order delay differential equations, Optimization, 63 (2014), 1181–1190. doi: 10.1080/02331934.2014.906597
    [24] J. R. Wang, M. Feckan, Y. Zhou, Ulam's type stability of impulsive ordinary differential equations, J. Math. Anal. Appl., 395 (2012), 258–264. doi: 10.1016/j.jmaa.2012.05.040
    [25] J. R. Wang, Y. Zhou, M. Feckan, Nonlinear impulsive problems for fractional differential equations and Ulam stability, Comput.Math.Appl., 64 (2012), 3389–3405. doi: 10.1016/j.camwa.2012.02.021
    [26] R. W. Ibrahim, Generalized Ulam-Hyers stability for fractional differential equations, Internat. J. Math., 23 (2012), 1250056. doi: 10.1142/S0129167X12500565
    [27] M. Ahmad, A. Zada, J. Alzabut, Hyers-Ulam stability of a coupled system of fractional differential equations of Hilfer-Hadamard type, Demonstr. Math., 52 (2019), 283–295. doi: 10.1515/dema-2019-0024
    [28] A. Zada, J. Alzabut, H. Waheed, I. L. Popa, Ulam-Hyers stability of impulsive integrodifferential equations with Riemann–Liouville boundary conditions, Adv. Differ. Equ., 2020 (2020), 64. doi: 10.1186/s13662-020-2534-1
    [29] S. S. Haider, M. ur Rehman, Ulam-Hyers-Rassias stability and existence of solutions to nonlinear fractional difference equations with multipoint summation boundary condition, Acta Math. Sci., 40 (2020), 589–602. doi: 10.1007/s10473-020-0219-1
    [30] C. Chen, M. Bohner, B. Jia, Ulam-Hyers stability of Caputo fractional difference equations, Math. Methods Appl. Sci., 42 (2019), 7461–7470. doi: 10.1002/mma.5869
    [31] F. Chen, Y. Zhou, Existence of Ulam stability of solutions for discrete fractional boundary value problem, Discrete Dyn. Nat. Soc., 2013 (2013), 459161.
    [32] A. G. M. Selvam, J. Alzabut, R. Dhineshbabu, M. Rehman, S. Rashid, Discrete fractional order two point boundary value problems with some relevant physical applications, J. Inequal. Appl., 221 (2020).
    [33] Y. Guo, X. B. Shu, Y. Li, F. Xu, The existence and Hyers-Ulam stability of solution for an impulsive Riemann–Liouville fractional neutral functional stochastic differential equation with infinite delay of order $1 < \beta < 2$, Bound. Value Probl., 59 (2019).
    [34] S. Li, L. Shu, X. B. Shu, F. Xu, Existence and Hyers-Ulam stability of random impulsive stochastic functional differential equations with finite delays, Stochastics, 91 (2019), 857–872. doi: 10.1080/17442508.2018.1551400
    [35] A. Zada, W. Ali, S. Farina, Hyers-Ulam stability of nonlinear differential equations with fractional integrable impulses, Math. Methods Appl. Sci., 40 (2017), 5502–5514. doi: 10.1002/mma.4405
    [36] M. A. Krasnosel'ski$\mathop {\rm{i}}\limits^ \vee $, Two remarks on the method of successive approximation, Usp. Mat. Nauk., 10 (1955), 123–127.
    [37] R. H. Enns, G. C. Mcguire, Nonlinear Physics with Mathematica for Scientists and Engineers, Birkhauser, Boston, 2001.
    [38] M. S. Abdo, T. Abdeljawad, K. Shah, S. M. Ali, On nonlinear coupled evolution system with nonlocal subsidiary conditions under fractal‐fractional order derivative, Math. Methods Appl. Sci., (2021), 1–20.
    [39] A. Ali, I. Mahariq, K. Shah, T. Abdeljawad, B.Al-Sheikh, Stability analysis of initial value problem of pantograph-type implicit fractional differential equations with impulsive conditions, Adv. Differ. Equ., 2021 (2021).
    [40] M. Arfan, K. Shah, A. Ullah, S. Salahshour, A. Ahmadian, M. Ferrara, A novel semi-analytical method for solutions of two dimensional fuzzy fractional wave equation using natural transform, Discrete & Continuous Dyn. Syst.-S, 2021.
    [41] H. Alrabaiah, A. Zeb, E. Alzahrani, K. Shah, Dynamical analysis of fractional-order tobacco smoking model containing snuffing class, Alex. Eng. J., 60 (2021), 3669–3678. doi: 10.1016/j.aej.2021.02.005
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2199) PDF downloads(121) Cited by(13)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog