We consider a Lotka-Volterra competition-diffusion-advection system with the total resources for two competitors fixed at the same level. We reveal the combined effect of competition abilities and spatial variations on the coexistence of two competing species. It is obtained that when the ratio of advection rate $ \alpha $ to diffusion rate $ d_1 $ is appropriately large, the two competing species will always coexist if the inter-specific competition coefficients $ (b, c) $ in $ (0, 1]\times(0, 1] $ and when the ratio is appropriately small, the two species will coexist if the inter-specific competition coefficients $ c $ is appropriately small and $ b $ is in $ (0, 1] $.
Citation: Jinyu Wei, Bin Liu. Coexistence in a competition-diffusion-advection system with equal amount of total resources[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 3543-3558. doi: 10.3934/mbe.2021178
We consider a Lotka-Volterra competition-diffusion-advection system with the total resources for two competitors fixed at the same level. We reveal the combined effect of competition abilities and spatial variations on the coexistence of two competing species. It is obtained that when the ratio of advection rate $ \alpha $ to diffusion rate $ d_1 $ is appropriately large, the two competing species will always coexist if the inter-specific competition coefficients $ (b, c) $ in $ (0, 1]\times(0, 1] $ and when the ratio is appropriately small, the two species will coexist if the inter-specific competition coefficients $ c $ is appropriately small and $ b $ is in $ (0, 1] $.
[1] | R. S. Cantrell, C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Series in Mathematical and Computational Biology, John Wiley and Sons, Chichester, UK, 2003. |
[2] | A. Okubo, S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives, 2nd edition, Springer, Berlin, 2001. |
[3] | N. Shigesada, K. Kawasaki, Biological Invasions: Theory and Practice, Oxford University Press, Oxford, 1997. |
[4] | P. Turchin, Qualitative Analysis of Movement, Sinauer, Sunderland, 1998. |
[5] | G. Denaro, D. Valenti, A. La Cognata, B. Spagnolo, A. Bonanno, G. Basilone, et al., Spatio-temporal behaviour of the deep chlorophyll maximum in Mediterranean Sea: Development of a stochastic model for picophytoplankton dynamics, Ecol. Complex., 13 (2013), 21–34. doi: 10.1016/j.ecocom.2012.10.002 |
[6] | A. Giuffrida, D. Valenti, G. Ziino, B. Spagnolo, A. Panebianco, A stochastic interspecific competition model to predict the behaviour of Listeria monocytogenes in the fermentation process of a traditional Sicilian salami, Eur. Food Res. Technol., 228 (2019), 767–775. |
[7] | B. Spagnolo, D. Valenti, A. Fiasconaro, Noise in ecosystems: A short review, Math. Biosci. Eng., 1 (2004), 185–211. doi: 10.3934/mbe.2004.1.185 |
[8] | D. Valenti, G. Denaro, A. La Cognata, B. Spagnolo, A. Bonanno, G. Basilone, et al., Picophytoplankton dynamics in noisy marine environment, Acta Phys. Pol. B, 43 (2012), 1227. doi: 10.5506/APhysPolB.43.1227 |
[9] | D. Valenti, A. Fiasconaro, B. Spagnolo, Stochastic resonance and noise delayed extinction in a model of two competing species, Physica A, 331 (2004), 477–485. doi: 10.1016/j.physa.2003.09.036 |
[10] | A. Hastings, Can spatial variation alone lead to selection for dispersal?, Theor. Pop. Biol., 24 (1983), 244–251. doi: 10.1016/0040-5809(83)90027-8 |
[11] | Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differ. Equ., 223 (2006), 400–426. doi: 10.1016/j.jde.2005.05.010 |
[12] | X. He, W. M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: diffusion and spatial heterogeneity I, Commun. Pure Appl. Math., 69 (2016), 981–1014. doi: 10.1002/cpa.21596 |
[13] | X. He, W. M. Ni, The effects of diffusion and spatial variation in Lokta-Volterra competition-diffusion system, I: Heterogeneity vs. homogeneity, J. Diff. Eqs., 254 (2013), 528–546. doi: 10.1016/j.jde.2012.08.032 |
[14] | X. He, W. M. Ni, The effects of diffusion and spatial variation in Lokta-Volterra competition-diffusion system, Ⅱ: The general case, J. Diff. Eqs., 254 (2013), 4088–4108. doi: 10.1016/j.jde.2013.02.009 |
[15] | X. He, W. M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, Ⅱ, Calc. Var. Partial Diff. Equ., 55 (2016), 25. doi: 10.1007/s00526-016-0964-0 |
[16] | X. He, W. M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, Ⅲ, Calc. Var. Partial Diff. Equ., 56 (2017), 1–26. doi: 10.1007/s00526-016-1094-4 |
[17] | Y. Lou, D. M. Xiao, P. Zhou, Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment, Discrete Contin. Dyn. Syst. A, 36 (2016) 953–969. |
[18] | J. Y. Wei, B. Liu. Global dynamics of a Lotka-Volterra competition-diffusion-advection system for small diffusion rates in heterogenous environment, Math. Biosci. Eng., 18 (2021), 564–582. doi: 10.3934/mbe.2021031 |
[19] | P. Zhou, X. Q. Zhao, Evolution of passive movement in advective environments: general boundary condition, J. Differ. Equ., 264 (2018), 4176–4198. doi: 10.1016/j.jde.2017.12.005 |
[20] | R. S. Cantrell, C. Cosner, Y. Lou, Movement towards better environments and the evolution of rapid diffusion, Math. Biosci., 204 (2006), 199–214. doi: 10.1016/j.mbs.2006.09.003 |
[21] | Q. Wang, Some global dynamics of a Lotka-Volterra competition-diffusion-advection system, Commun. Pure Appl. Anal., 19 (2020), 3245–3255. doi: 10.3934/cpaa.2020142 |
[22] | B. Xu, H. Jiang, Invasion and coexistence of competition-diffusion-advection system with heterogenous vs homogeneous resources, Discrete Contin. Dyn. Syst. B, 23 (2018), 4255–4266. doi: 10.3934/dcdsb.2018136 |
[23] | P. Zhou, D. M. Xiao, Global dynamics of a classical Lotka-Volterra competition-diffusion-advection system, J. Funct. Anal., 275 (2018), 356–380. doi: 10.1016/j.jfa.2018.03.006 |
[24] | I. Averill, K. Y. Lam, Y. Lou, The role of advection in a two-species competition model: A bifurcation approach, Mem. Am. Math. Soc., 245 (2017), 1161. |
[25] | X. F. Chen, R. Hambrock, Y. Lou, Evolution of conditional dispersal: A reaction-diffusion-advection model, J. Math. Biol., 57 (2008), 361–386. doi: 10.1007/s00285-008-0166-2 |
[26] | R. Hambrock, Y. Lou, The evolution of conditional dispersal strategy in spatially heterogeneous habitats, Bull. Math. Biol., 71 (2009), 1793–1817. doi: 10.1007/s11538-009-9425-7 |
[27] | R. S. Cantrell, C. Cosner, Y. Lou, Advection mediated coexistence of competing species, Proc. Roy. Soc. Edinb. Sect. A, 137 (2007), 497–518. doi: 10.1017/S0308210506000047 |
[28] | K. Y. Lam, Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model, J. Differ. Equ., 250 (2011), 161–181. doi: 10.1016/j.jde.2010.08.028 |
[29] | K. Y. Lam, Limiting profiles of semilinear elliptic equations with large advection in population dynamics Ⅱ, SIAM J. Math. Anal., 44 (2012), 1808–1830. doi: 10.1137/100819758 |
[30] | X. F. Chen, K. Y. Lam, Y. Lou, Dynamics of a reaction-diffusion-advection model for two competing species, Discrite Contin. Syst., 32 (2012), 3841–3859. doi: 10.3934/dcds.2012.32.3841 |
[31] | X. F. Chen, Y. Lou, Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model, Indiana Univ. Math. J., 57 (2008), 627–658. doi: 10.1512/iumj.2008.57.3204 |
[32] | X. F. Chen, Y. Lou, Effects of diffusion and advection on the smallest eigenvalue of an elliptic operator and their applications, Indiana Univ. Math. J., 61 (2012), 45–80. doi: 10.1512/iumj.2012.61.4518 |
[33] | K. Y. Lam, W. M. Ni, Limiting profiles of semilinear elliptic equations with large advection in population dynamics, Discrete Contin. Dyn. Syst. A, 28 (2010), 1051–1067. doi: 10.3934/dcds.2010.28.1051 |
[34] | Y. Lou, Some challenging mathematical problems in evolution of dispersal and population dynamics, in Tutorials in Mathematical Biosciences IV, Springer, Berlin, (2008), 171–205. |
[35] | M. H. Protter, H. F. Weinberger, Maximum Principles in Differential Equations, 2nd edition, Springer, Berlin, 1984. |
[36] | C. Cosner, Y. Lou, Does movement toward better environments always benefit a population?, J. Math. Anal. Appl., 277 (2003), 489–503. doi: 10.1016/S0022-247X(02)00575-9 |
[37] | F. Belgacem, C. Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environment, Canadian Appl. Math. Quarterly, 3 (1995), 379–397. |
[38] | P. Hess, Periodic-parabolic Boundary Value Problems and Positivity (Pitman Research Notes in Mathematics), Longman, Harlow, UK, 1991. |
[39] | K. J. Brown, S. S. Lin, On the existence of positive eigenfunctions for an eigenvalue problem with indefinite weight function, J. Math. Anal. Appl., 75 (1980), 112–120. doi: 10.1016/0022-247X(80)90309-1 |
[40] | W. M. Ni, The Mathematics of Diffusion, Society for Industrial and Applied Mathematics, Philadelphia, 2011. |
[41] | S. Senn, P. Hess, On positive solutions of a linear elliptic eigenvalue problem with Neumann boundary conditions, Math. Ann., 258 (1982), 459–470. doi: 10.1007/BF01453979 |
[42] | D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. |