A huge variety of phenomena are governed by ordinary differential equations (ODEs) and partial differential equations (PDEs). However, there is no general method to solve them. Obtaining solutions for differential equations is one of the greatest problem for both applied mathematics and physics. Multiple integration methods have been developed to the day to solve particular types of differential equations, specially those focused on physical or biological phenomena. In this work, we review several applications of the Lie method to obtain solutions of reaction-diffusion equations describing cell dynamics and tumour invasion.
Citation: Salvador Chulián, Álvaro Martinez-Rubio, María Luz Gandarias, María Rosa. Lie point symmetries for generalised Fisher's equations describing tumour dynamics[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 3291-3312. doi: 10.3934/mbe.2021164
A huge variety of phenomena are governed by ordinary differential equations (ODEs) and partial differential equations (PDEs). However, there is no general method to solve them. Obtaining solutions for differential equations is one of the greatest problem for both applied mathematics and physics. Multiple integration methods have been developed to the day to solve particular types of differential equations, specially those focused on physical or biological phenomena. In this work, we review several applications of the Lie method to obtain solutions of reaction-diffusion equations describing cell dynamics and tumour invasion.
[1] | R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugen., 7 (1937), 355–369. doi: 10.1111/j.1469-1809.1937.tb02153.x |
[2] | A. Kolmogorov, I. Petrovskii, N. Piskunov, A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem, Bull. Mosc. Univ. University, Ser. Int., A (1937), 1–25. |
[3] | J. D. Murray (ed.), Mathematical Biology, Springer New York, 2002. |
[4] | G. de Vries, M. Lewis, T. Hillen, A Course in Mathematical Biology: A Quantitative Modeling with Mathematical and Computational Methods, Cambridge, 2006. |
[5] | V. Volpert, S. Petrovskii, Reaction-diffusion waves in biology, Phys. Life Rev., 6 (2009), 267–310. doi: 10.1016/j.plrev.2009.10.002 |
[6] | N. Shigesada, Biological Invasions, OUP Oxford, 1997. |
[7] | N. Britton, Aggregation and the competitive exclusion principle, J. Theor. Biol., 136 (1989), 57–66. doi: 10.1016/S0022-5193(89)80189-4 |
[8] | E. E. Holmes, M. A. Lewis, J. E. Banks, R. R. Veit, Partial differential equations in ecology: Spatial interactions and population dynamics, Ecology, 75 (1994), 17–29. doi: 10.2307/1939378 |
[9] | H. Malchow, S. V. Petrovskii, E. Venturino, Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation [With CD (Audio)], Champan & Hall, 2007. |
[10] | M. A. Lewis, S. V. Petrovskii, J. R. Potts, Dynamics of biological invasions, in Interdisciplinary Applied Mathematics, Springer International Publishing, 2016, 19–68. |
[11] | K. R. Swanson, C. Bridge, J. Murray, E. C. Alvord, Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion, J. Neurol. Sci., 216 (2003), 1–10. doi: 10.1016/j.jns.2003.06.001 |
[12] | V. M. Pérez-García, G. F. Calvo, J. Belmonte-Beitia, D. Diego, L. Pérez-Romasanta, Bright solitary waves in malignant gliomas, Phys. Rev. E, 84. |
[13] | J. Belmonte-Beitia, G. F. Calvo, V. M. Pérez-García, Effective particle methods for fisher-kolmogorov equations: Theory and applications to brain tumor dynamics, Commu. Nonlinear Sci., 19 (2014), 3267–3283. |
[14] | J. F. Douglas, K. Efimenko, D. A. Fischer, F. R. Phelan, J. Genzer, Propagating waves of self-assembly in organosilane monolayers, Proc. Natl. Acad. Sci., 104 (2007), 10324–10329. doi: 10.1073/pnas.0703620104 |
[15] | I. R. Epstein, J. A. Pojman, G. Nicolis, An introduction to nonlinear chemical dynamics: Oscillations, waves, patterns, and chaos, Phys. Today, 52 (1999), 68–68. |
[16] | P. Grindrod, Patterns and waves: The theory and applications of reaction-diffusion equations, Clarendon Press Oxford University Press, Oxford New York, 1991. |
[17] | P. Olver, Applications of Lie Groups to Differential Equations, Springer US, New York, NY, 1986. |
[18] | P. A. Clarksonz, E. L. Mansfield, Symmetry reductions and exact solutions of a class of nonlinear heat equations, Physica D, 70 (1994), 250–288. doi: 10.1016/0167-2789(94)90017-5 |
[19] | M. J. Ablowitz, A. Zeppetella, Explicit solutions of fisher's equation for a special wave speed, Bull. Math. Biol., 41 (1979), 835–840. doi: 10.1016/S0092-8240(79)80020-8 |
[20] | T. E. Mogorosi, I. L. Freire, B. Muatjetjeja, C. M. Khalique, Group analysis of a hyperbolic lane-emden system, Appl. Math. Comput., 292 (2017), 156–164. |
[21] | K. Louw, R. J. Moitsheki, Group-invariant solutions for the generalised fisher type equation, Nat. Sci., 7 (2015), 613–624. |
[22] | S. Lie, Lie group analysis: Classical heritage, chapter Integration of a class of linearpartial differential equations by means of definite integrals, 65–100, ALGA Publications, 2004. |
[23] | L. V. Ovsiannikov, Group analysis of differential equations, Academic Press, 1982. |
[24] | V. Dorodnitsyn, On invariant solutions of the equation of non-linear heat conduction with a source, USSR Comput. Math. Math. Phys., 22 (1982), 115–122. |
[25] | R. Cherniha, M. Serov, Lie and non-lie symmetries of nonlinear diffusion equations with convection term, Symmetry Nonlinear Math. Phys., 2 (1997), 444–449. |
[26] | M. Rosa, M. L. Gandarias, Multiplier method and exact solutions for a density dependent reaction-diffusion equation, Appl. Math. Nonlinear Sci., 1 (2016), 311–320. doi: 10.21042/AMNS.2016.2.00026 |
[27] | M. Gandarias, M. Bruzón, M. Rosa, Nonlinear self-adjointness and conservation laws for a generalized fisher equation, Commu. Nonlinear Sci., 18 (2013), 1600–1606. doi: 10.1016/j.cnsns.2012.11.023 |
[28] | R. Cherniha, J. R. King, Lie symmetries and conservation laws of non-linear multidimensional reaction-diffusion systems with variable diffusivities, IMA J. App. Math., 71 (2006), 391–408. |
[29] | S. Chulián, M. Rosa, M. Gandarias, Reductions and symmetries for a generalized fisher equation with a diffusion term dependent on density and space, J. Comput. App. Math., 354 (2019), 689–698. doi: 10.1016/j.cam.2018.11.018 |
[30] | J. Belmonte-Beitia, T. Woolley, J. Scott, P. Maini, E. Gaffney, Modelling biological invasions: Individual to population scales at interfaces, J. Theor. Biol., 334 (2013), 1–12. doi: 10.1016/j.jtbi.2013.05.033 |
[31] | M. Rosa, M. Bruzón, M. Gandarias, Symmetry analysis and exact solutions for a generalized fisher equation in cylindrical coordinates, Commu. Nonlinear Sci., 25 (2015), 74–83. doi: 10.1016/j.cnsns.2015.01.010 |
[32] | A. H. Bokhari, R. A. A. Al-Rubaee, F. Zaman, On a generalized fisher equation, Commu. Nonlinear Sci., 16 (2011), 2689–2695. doi: 10.1016/j.cnsns.2010.10.019 |
[33] | R. J. Moitsheki, O. D. Makinde, Classical lie point symmetry analysis of nonlinear diffusion equations describing thermal energy storage, Appl. Math. Comput., 216 (2010), 251–260. |
[34] | M. Rosa, S. Chulián, M. Gandarias, R. Traciná, Application of lie point symmetries to the resolution of an interface problem in a generalized fisher equation, Physica D, 405 (2020), 132411. doi: 10.1016/j.physd.2020.132411 |
[35] | M. Rosa, M. Bruzón, M. Gandarias, Lie symmetry analysis and conservation laws for a fisher equation with variable coefficients, Appl. Math. Inf. Sci., 9 (2015), 2783. |
[36] | M. Rosa, M. S. Bruzón, M. L. Gandarias, A conservation law for a generalized chemical fisher equation, J. Math. Chem., 53 (2014), 941–948. |
[37] | M. Rosa, J. Camacho, M. Bruzón, M. Gandarias, Classical and potential symmetries for a generalized fisher equation, J. Comput. Appl. Math., 318 (2017), 181–188. doi: 10.1016/j.cam.2016.10.028 |
[38] | V. M. Pérez-García, G. F. Calvo, J. J. Bosque, O. León-Triana, J. Jiménez, J. Pérez-Beteta, et al., Universal scaling laws rule explosive growth in human cancers, Nat. Phys., 16 (2020), 1232–1237. doi: 10.1038/s41567-020-0978-6 |
[39] | S. Chulián, M. Rosa, M. L. Gandarias, Symmetries and solutions for a fisher equation with a proliferation term involving tumor development, Math. Meth. Appl. Sci., 43 (2020), 2076–2084. doi: 10.1002/mma.6105 |
[40] | K. R. Swanson, E. C. Alvord, J. D. Murray, Quantifying efficacy of chemotherapy of brain tumors with homogeneous and heterogeneous drug delivery, Acta Biotheor., 50 (2002), 223–237. doi: 10.1023/A:1022644031905 |
[41] | E. Konukoglu, O. Clatz, B. Menze, B. Stieltjes, M.-A. Weber, E. Mandonnet, et al., Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations, IEEE Trans. Med. Imaging, 29 (2010), 77–95. |
[42] | K. Swanson, Mathematical modeling of the growth and control of tumors, PhD thesis, University of Washington, Seattle, Washington, 1999. |
[43] | K. R. Swanson, E. C. Alvord, J. D. Murray, A quantitative model for differential motility of gliomas in grey and white matter, Cell Prolif., 33 (2000), 317–329. doi: 10.1046/j.1365-2184.2000.00177.x |
[44] | K. R. Swanson, R. C. Rockne, J. Claridge, M. A. Chaplain, E. C. Alvord, A. R. A. Anderson, Quantifying the role of angiogenesis in malignant progression of gliomas: In silico modeling integrates imaging and histology, Cancer Res., 71 (2011), 7366–7375. doi: 10.1158/0008-5472.CAN-11-1399 |
[45] | A. Giesexs, M. Westphal, Glioma invasion in the central nervous system, Neurosurgery, 39 (1996), 235–252. doi: 10.1097/00006123-199608000-00001 |
[46] | J. Belmonte-Beitia, On the existence of traveling wave solutions and upper and lower bounds for some fisher-kolmogorov type equations, Int. J. Biomath., 7 (2014), 1450050. doi: 10.1142/S1793524514500508 |