[1]
|
V. S. Ramanath, J. K. Oh, T. M. Sundt, K. A. Eagle, Acute aortic syndromes and thoracic aortic aneurysm, Mayo Clin. Proc., 84 (2009), 465-481. doi: 10.1016/S0025-6196(11)60566-1
|
[2]
|
M. S. Makaroun, E. D. Dillavou, G. H. Wheatley, R. P. Cambria, Five-year results of endovascular treatment with the Gore TAG device compared with open repair of thoracic aortic aneurysms, J. Vasc. Surg., 47 (2008), 912-918. doi: 10.1016/j.jvs.2007.12.006
|
[3]
|
S. R. Walsh, T. Y. Tang, U. Sadat, J. Naik, M. E. Gaunt, R. B. Jonathan, et al., Endovascular stenting versus open surgery for thoracic aortic disease: Systematic review and meta-analysis of perioperative results, J. Vasc. Surg., 47 (2008), 1094-1098.e3. doi: 10.1016/j.jvs.2007.09.062
|
[4]
|
T. Baba, T. Ohki, Y. Kanaoka, K. Maeda, Clinical Outcomes of Left Subclavian Artery Coverage on Morbidity and Mortality During Thoracic Endovascular Aortic Repair for Distal Arch Aneurysms, World J. Surg., 39 (2015), 2812-2822. doi: 10.1007/s00268-015-3166-6
|
[5]
|
R. J. Feezor, W. A. Lee, Management of the Left Subclavian Artery during TEVAR, Semin. Vasc. Surg., 22 (2009), 159-164. doi: 10.1053/j.semvascsurg.2009.07.007
|
[6]
|
J. C. Ingrund, F. Nasser, S. G. Jesus-Silva, R. P. Limaco, F. L. Galastri, M. C. Burihan, et al., Hybrid procedures for complex thoracic aortic diseases, Braz. J. Cardiovasc. Surg., 25 (2010), 303-310. doi: 10.1590/S0102-76382010000300005
|
[7]
|
H. Wouter, F. J. V. Schlösser, F. L. Moll, B. E. Sumpio, B. E. Muhs, Thoracic endovascular aortic repair with the chimney graft technique, J. Vasc. Surg., 58 (2013), 502-511. doi: 10.1016/j.jvs.2013.03.043
|
[8]
|
C. M. T. Jost, Stenting in Europe, what lessons can we learn? Development of a stent classification system based on a survey of European clinical experiences, Catheterization Cardiovasc. Interventions, 45 (1998), 217-232. doi: 10.1002/(SICI)1097-0304(199811)45:3<217::AID-CCD1>3.0.CO;2-I
|
[9]
|
L. Petrini, F. Migliavacca, F. Auricchio, G. Dubini, Numerical investigation of the intravascular coronary stent flexibility, J. Biomech., 37 (2004), 495-501. doi: 10.1016/j.jbiomech.2003.09.002
|
[10]
|
N. Demanget, S. Avril, P. Badel, L. Orgéas, C. Geindreau, J. N. Albertini, et al., Computational comparison of the bending behavior of aortic stent-grafts, J. Mech. Behav. Biomed. Mater., 5 (2012), 272-282. doi: 10.1016/j.jmbbm.2011.09.006
|
[11]
|
C. Alfio, P. L. Faries, N. J. Morrissey, T. Victoria, J. A. Burks, E. C. Gravereaux, et al., Predicting iliac limb occlusions after bifurcated aortic stent grafting: anatomic and device-related causes, J. Vasc. Surg., 36 (2002), 679-684. doi: 10.1016/S0741-5214(02)00117-9
|
[12]
|
S. R. Dixon, Stent longitudinal flexibility: A comparison of 13 stent designs before and after balloon expansion, Catheter Cardiovasc. Intervention, 50 (2000), 120-124. doi: 10.1002/(SICI)1522-726X(200005)50:1<120::AID-CCD26>3.0.CO;2-T
|
[13]
|
W. Q. Wang, D. K. Liang, D. Z. Yang, M. Qi, Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method, J. Biomech., 39 (2006), 21-32. doi: 10.1016/j.jbiomech.2004.11.003
|
[14]
|
F. R. Arko, W. A. Lee, B. B. Hill, P. Cipriano, T. J. Fogarty, C. K. Zarins, Increased Flexibility of AneuRx Stent-Graft Reduces Need for Secondary Intervention following Endovascular Aneurysm Repair, J. Endovascular Ther., 8 (2001), 583-591.
|
[15]
|
N. Demanget, A. Duprey, P. Badel, L. Orgéas, S. Avril, C. Geindreau, et al., Finite element analysis of the mechanical performances of 8 marketed aortic stent-grafts, J. Endovascular Ther., 20 (2013), 523-535. doi: 10.1583/12-4063.1
|
[16]
|
J. N. Albertini, M. A. DeMasi, J. Macierewicz, R. E. Idrissi, B. R. Hopkinson, C. Clement, et al., Aorfix Stent Graft for Abdominal Aortic Aneurysms Reduces the Risk of Proximal Type 1 Endoleak in Angulated Necks: Bench-Test Study, Vascular, 13 (2005), 321-326. doi: 10.1258/rsmvasc.13.6.321
|
[17]
|
A. R. Weale, K. Balasubramaniam, J. Hardman, M. Horrocks, Use of the AorfixTM stent graft in patients with tortuous iliac anatomy, J. Cardiovasc. Surg., 51 (2010), 461-466.
|
[18]
|
F. S. Cui, H. P. Lee, C. Lu, P. Chai, Effects of balloon length and compliance on vascular stent expansion, Int. J. Appl. Mech., 2 (2010), 681-697. doi: 10.1142/S1758825110000718
|
[19]
|
F. Kabinejadian, F. Cui, B. Su, A. Danpinid, H. Pei, H. L. Leo, Effects of a carotid covered stent with a novel membrane design on the blood flow regime and hemodynamic parameters distribution at the carotid artery bifurcation, Med. Biol. Eng. Comput., 53 (2015), 165-177. doi: 10.1007/s11517-014-1222-2
|
[20]
|
A. Karimi, M. Navidbakhsh, H. Yamada, R. Razaghi, A nonlinear finite element simulation of balloon expandable stent for assessment of plaque vulnerability inside a stenotic artery, Med. Biol. Eng. Comput., 52 (2014), 589-599. doi: 10.1007/s11517-014-1163-9
|
[21]
|
C. Kleinstreuer, Z. Li, C. A. Basciano, S. Seelecke, M. A. Farber, Computational mechanics of Nitinol stent grafts, J. Biomech., 41 (2008), 2370-2378. doi: 10.1016/j.jbiomech.2008.05.032
|
[22]
|
S. D. Bock, F. Iannaccone, G. D. Santis, M. D. Beule, D. V. Loo, D. Devos, et al., Virtual evaluation of stent graft deployment: A validated modeling and simulation study, J. Mech. Behav. Biomed. Mater., 13 (2012), 129-139. doi: 10.1016/j.jmbbm.2012.04.021
|
[23]
|
G. P. Kumar, F. Cui, A. Danpinid, B. Su, J. K. F. Hon, H. L. Leo, Design and finite element-based fatigue prediction of a new self-expandable percutaneous mitral valve stent, Comput. Aided Des., 45 (2013), 1153-1158. doi: 10.1016/j.cad.2013.05.003
|
[24]
|
N. Demanget, L. Orgéas, P. Badel, S. Avril, C. Geindreau, J. N. Albertini, et al., Severe Bending of Two Aortic Stent-Grafts: An Experimental and Numerical Mechanical Analysis, Ann. Biomed. Eng., 40 (2012), 2674-2686. doi: 10.1007/s10439-012-0618-0
|
[25]
|
K. Mori, T. Saito, Effects of Stent Structure on Stent Flexibility Measurements, Ann. Biomed. Eng., 33 (2005), 733-742. doi: 10.1007/s10439-005-2807-6
|
[26]
|
G. P. Kumar, L. Mathew, Self-expanding aortic valve stent-material optimization, Comput. Biol. Med., 42 (2012), 1060-1063. doi: 10.1016/j.compbiomed.2012.08.007
|
[27]
|
W. Wu, L. Petrini, D. Gastaldi, T. Villa, M. Vedani, E. Lesma, et al., Finite element shape optimization for biodegradable magnesium alloy stents, Ann. Biomed. Eng., 38 (2010), 2829-2840. doi: 10.1007/s10439-010-0057-8
|
[28]
|
H. H. Zhang, H. Q. Feng, J. Liu, K. Wang, Simulation on flexibility of vascular stent and grey correlation analysis, J. Med. Biomech., 31 (2016), 206-212.
|
[29]
|
Y. Liu, G. Zhu, H. Yang, C. Wang, P. Zhang, G. Han, Bending behaviors of fully covered biodegradable polydioxanone biliary stent for human body by finite element method, J. Mech. Behav. Biomed. Mater., 77 (2018), 157-163. doi: 10.1016/j.jmbbm.2017.08.023
|
[30]
|
L. Gu, S. Santra, R. A. Mericle, A. V. Kumar, Finite element analysis of covered microstents, J. Biomech., 38 (2005), 1221-1227. doi: 10.1016/j.jbiomech.2004.06.008
|
[31]
|
I. C. T. Santos, A. Rodrigues, L. Figueiredo, L. A. Rocha, J. M. R. S. Tavares, Mechanical properties of stent-graft materials, Proceedings of the Institution of Mechanical Engineers Part L J. Mater. Des. Appl., 226 (2012), 330-341.
|
[32]
|
A. Wanhainen, R. Nyman, M. O. Eriksson, First report of a late type Ⅲ endoleak from fabric tears of a Zenith stent graft, J. Vasc. Surg., 48 (2008), 723-726. doi: 10.1016/j.jvs.2008.03.047
|
[33]
|
I. Y. Shin, Y. G. Chung, W. H. Shin, S. B. Im, B. T. Kim, A Morphometric Study on Cadaveric Aortic Arch and Its Major Branches in 25 Korean Adults: The Perspective of Endovascular Surgery, J. Korean Neurosurg. Soc., 44 (2008), 78-83. doi: 10.3340/jkns.2008.44.2.78
|
[34]
|
H. H. Choi, S. M. Hwang, Y. H. Kang, J. Kim, B. S. Kang, Comparison of Implicit and Explicit Finite-Element Methods for the Hydroforming Process of an Automobile Lower Arm, Int. J. Adv. Manuf. Technol., 20 (2002), 407-413. doi: 10.1007/s001700200170
|