Review Special Issues

Recent advances and future trends in exploring Pareto-optimal topologies and additive manufacturing oriented topology optimization

  • Received: 14 April 2020 Accepted: 27 June 2020 Published: 07 July 2020
  • Topology optimization (TO) is a powerful technique capable of finding the optimal layout of material and connectivity within a design domain. However, designs obtained by TO are usually geometrically complex. Such complex designs cannot be fabricated easily by conventional manufacturing methods. Therefore, additive manufacturing (AM), a free-form manufacturing technique, is extensively coupled with TO. Like most techniques, AM has its own limitations. Consequently, a range of additive manufacturing oriented topology optimization (AM oriented TO) algorithms were proposed to generate the topologies suitable for AM. Due to existing trade-off relationships in AM oriented TO, investigating multi-objective AM oriented TO seems essential to obtain more practical solutions. This paper provides a review on the recent developments of MOTO, AM oriented TO, and trade-off relationships that exist in AM oriented TO. This review paper also discusses the challenges and future trends in these topics. It is hoped that this review paper could inspire both academics and engineers to make a contribution towards bridging together MOTO and AM.

    Citation: Yun-Fei Fu. Recent advances and future trends in exploring Pareto-optimal topologies and additive manufacturing oriented topology optimization[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 4631-4656. doi: 10.3934/mbe.2020255

    Related Papers:

  • Topology optimization (TO) is a powerful technique capable of finding the optimal layout of material and connectivity within a design domain. However, designs obtained by TO are usually geometrically complex. Such complex designs cannot be fabricated easily by conventional manufacturing methods. Therefore, additive manufacturing (AM), a free-form manufacturing technique, is extensively coupled with TO. Like most techniques, AM has its own limitations. Consequently, a range of additive manufacturing oriented topology optimization (AM oriented TO) algorithms were proposed to generate the topologies suitable for AM. Due to existing trade-off relationships in AM oriented TO, investigating multi-objective AM oriented TO seems essential to obtain more practical solutions. This paper provides a review on the recent developments of MOTO, AM oriented TO, and trade-off relationships that exist in AM oriented TO. This review paper also discusses the challenges and future trends in these topics. It is hoped that this review paper could inspire both academics and engineers to make a contribution towards bridging together MOTO and AM.


    加载中


    [1] K. Ghabraie, An improved soft-kill BESO algorithm for optimal distribution of single or multiple material phases, Struct. Multidiscip. Optim., 52 (2015), 773-790. doi: 10.1007/s00158-015-1268-2
    [2] K. Ghabraie, The ESO method revisited, Struct. Multidiscip. Optim., 51 (2015), 1211-1222. doi: 10.1007/s00158-014-1208-6
    [3] L. N. S. Chiu, B. Rolfe, X. H. Wu, W. Y. Yan, Effect of stiffness anisotropy on topology optimisation of additively manufactured structures, Eng. Struct., 171 (2018), 842-848. doi: 10.1016/j.engstruct.2018.05.083
    [4] O. Sigmund, K. Maute, Topology optimization approaches: A comparative review, Struct. Multidiscip. Optim., 48 (2013), 1031-1055. doi: 10.1007/s00158-013-0978-6
    [5] M. P. Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng., 71 (1988), 197-224. doi: 10.1016/0045-7825(88)90086-2
    [6] M. P. Bendsøe, Optimal shape design as a material distribution problem, Struct. Optim., 1 (1989), 193-202. doi: 10.1007/BF01650949
    [7] O. Sigmund, A 99 line topology optimization code written in Matlab, Struct. Multidiscip. Optim., 21 (2001), 120-127. doi: 10.1007/s001580050176
    [8] G. Allaire, F. Jouve, A. M. Toader, A level-set method for shape optimization, C. R. Math., 334 (2002), 1125-1130. doi: 10.1016/S1631-073X(02)02412-3
    [9] G. Allaire, F. Jouve, A. M. Toader, Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194 (2004), 363-393. doi: 10.1016/j.jcp.2003.09.032
    [10] M. Y. Wang, X. M. Wang, D. M. Guo, A level set method for structural topology optimization, Comput. Methods Appl. Mech. Eng., 192 (2003), 227-246. doi: 10.1016/S0045-7825(02)00559-5
    [11] Y. M. Xie, G. P. Steven, Shape and layout optimization via an evolutionary procedure, in: Proceedings of International Conference on Computational Engineering Science, Hong Kong, 1992.
    [12] Y. M. Xie, G. P. Steven, A simple evolutionary procedure for structural optimization, Comput. Struct., 49 (1993), 885-896. doi: 10.1016/0045-7949(93)90035-C
    [13] X. Guo, W. S. Zhang, W. L. Zhong, Doing topology optimization explicitly and geometrically-A new moving morphable components based framework, J. Appl. Mech., 81 (2014), 081009. doi: 10.1115/1.4027609
    [14] X. Guo, W. S. Zhang, J. Zhang, J. Yuan, Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons, Comput. Methods Appl. Mech. Eng., 310 (2016), 711-748. doi: 10.1016/j.cma.2016.07.018
    [15] W. S. Zhang, J. Yuan, J. Zhang, X. Guo, A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model, Struct. Multidiscip. Optim., 53 (2016), 1243-1260. doi: 10.1007/s00158-015-1372-3
    [16] W. S. Zhang, D. Li, J. Yuan, J. F. Song, X. Guo, A new three-dimensional topology optimization method based on moving morphable components (MMCs), Comput. Mech., 59 (2017), 647-665. doi: 10.1007/s00466-016-1365-0
    [17] W. S. Zhang, W. Y. Yang, J. H. Zhou, D. Li, X. Guo, Structural topology optimization through explicit boundary evolution, J. Appl. Mech., 84 (2017), 011011. doi: 10.1115/1.4034972
    [18] W. S. Zhang, J. S. Chen, X. F. Zhu, J. H. Zhou, D. C. Xue, X. Lei, et al., Explicit three dimensional topology optimization via Moving Morphable Void (MMV) approach, Comput. Methods Appl. Mech. Eng., 322 (2017), 590-614. doi: 10.1016/j.cma.2017.05.002
    [19] W. S. Zhang, D. D. Li, P. Kang, X. Guo, S. K. Youn, Explicit topology optimization using IGA-based moving morphable void (MMV) approach, Comput. Methods Appl. Mech. Eng., 360 (2020), 112685. doi: 10.1016/j.cma.2019.112685
    [20] D. C. Da, L. Xia, G. Y. Li, X. D. Huang, Evolutionary topology optimization of continuum structures with smooth boundary representation, Struct. Multidiscip. Optim., 57 (2018), 2143-2159. doi: 10.1007/s00158-017-1846-6
    [21] Y. F. Fu, B. Rolfe, L. N. S. Chiu, Y. N. Wang, X. D. Huang, K. Ghabraie, Smooth topological design of 3D continuum structures using elemental volume fractions, Comput. Struct., 231 (2020), 106213. doi: 10.1016/j.compstruc.2020.106213
    [22] Y. F. Fu, B. Rolfe, N. S. L. Chiu, Y. N. Wang, X. D. Huang, K. Ghabraie, SEMDOT: Smooth-Edged Material Distribution for Optimizing Topology Algorithm, arXiv preprint arXiv: 2005.09233, 2020.
    [23] X. D. Huang, Smooth topological design of structures using the floating projection, Eng. Struct., 208 (2020), 110330. doi: 10.1016/j.engstruct.2020.110330
    [24] X. D. Huang, On smooth or 0/1 designs of the fixed-mesh element-based topology optimization, arXiv preprint arXiv: 2006.04306 (2020).
    [25] H. Bikas, P. Stavropoulos, G. Chryssolouris, Additive manufacturing methods and modelling approaches: A critical review, Int. J. Adv. Manuf. Technol., 83 (2016), 389-405. doi: 10.1007/s00170-015-7576-2
    [26] H. Lee, C. H. J. Lim, M. J. Low, N. Tham, V. M. Murukeshan, Y. J. Kim, Lasers in additive manufacturing: A review, Int. J. Precis. Eng. Manuf. Green Technol., 4 (2017), 307-322. doi: 10.1007/s40684-017-0037-7
    [27] J. C. Jiang, X. Xu, J. Stringer, Optimisation of multi-part production in additive manufacturing for reducing support waste, Virtual Phys. Prototyping, 14 (2019), 219-228. doi: 10.1080/17452759.2019.1585555
    [28] J. C. Jiang, X. Xu, J. Stringer, A new support strategy for reducing waste in additive manufacturing, in: The 48th International Conference on Computers and Industrial Engineering (CIE 48), 2018. Available from: https://www.researchgate.net/publication/329999272.
    [29] C. W. Hull, Apparatus for production of three-dimensional objects by stereolithography, 1986. US Patent 4,575,330A, August, 1984.
    [30] J. C. Jiang, X. Xu, J. Stringer, Support structures for additive manufacturing: A review, J. Manuf. Mater. Process., 2 (2018), 64.
    [31] J. C. Jiang, G. B. Hu, X. Li, X. Xu, P. Zheng, J. Stringer, Analysis and prediction of printable bridge length in fused deposition modelling based on back propagation neural network, Virtual Phys. Prototyping, 14 (2019), 253-266. doi: 10.1080/17452759.2019.1576010
    [32] J. C. Jiang, J. Stringer, X. Xu, Support optimization for flat features via path planning in additive manufacturing, 3D Print. Addit. Manuf., 6 (2019), 171-179. doi: 10.1089/3dp.2017.0124
    [33] J. C. Jiang, C. L. Yu, X. Xu, Y. S. Ma, J. K. Liu, Achieving better connections between deposited lines in additive manufacturing via machine learning, Math. Biosci. Eng., 17 (2020), 3382-3394. doi: 10.3934/mbe.2020191
    [34] J. C. Jiang, Y. S. Ma, Path planning strategies to optimize accuracy, quality, build time and material use in additive manufacturing: A review, Micromachines, 11 (2020), 633. doi: 10.3390/mi11070633
    [35] J. C. Jiang, A novel fabrication strategy for additive manufacturing processes, J. Cleaner Production, 2020, forthcoming.
    [36] D. Brackett, I. Ashcroft, R. Hague, Topology optimization for additive manufacturing, in: 23rd Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference, Austin, TX, 2011. Available from: https://sffsymposium.engr.utexas.edu/Manuscripts/2011/2011-27-Brackett.pdf.
    [37] J. K. Liu, Y. S. Ma, A survey of manufacturing oriented topology optimization methods, Adv. Eng. Software, 100 (2016), 161-175. doi: 10.1016/j.advengsoft.2016.07.017
    [38] D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: Materials, processes and mechanisms, Int. Mater. Rev., 57 (2012), 133-164. doi: 10.1179/1743280411Y.0000000014
    [39] T. T. Le, S. A. Austin, S. Lim, R. A. Buswell, R. Law, A. G. Gibb, et al., Hardened properties of high-performance printing concrete, Cem. Concr. Res., 42 (2012), 558-566. doi: 10.1016/j.cemconres.2011.12.003
    [40] W. E. Frazier, Metal additive manufacturing: A review, J. Mater. Eng. Perform., 23 (2014), 1917-1928. doi: 10.1007/s11665-014-0958-z
    [41] T. Zegard, G. H. Paulino, Bridging topology optimization and additive manufacturing, Struct. Multidiscip. Optim., 53 (2016), 175-192. doi: 10.1007/s00158-015-1274-4
    [42] Y. Saadlaoui, J. L. Milan, J. M. Rossi, P. Chabrand, Topology optimization and additive manufacturing: Comparison of conception methods using industrial codes, J. Manuf. Syst., 43 (2017), 178-186. doi: 10.1016/j.jmsy.2017.03.006
    [43] A. M. Mirzendehdel, K. Suresh, Support structure constrained topology optimization for additive manufacturing, Comput. Aided Des., 81 (2016), 1-13. doi: 10.1016/j.cad.2016.08.006
    [44] H. C. Yu, J. Q. Huang, B. Zou, W. Shao, J. K. Liu, Stress-constrained shell-lattice infill structural optimisation for additive manufacturing, Virtual Phys. Prototyping, 15 (2020), 35-48. doi: 10.1080/17452759.2019.1647488
    [45] X. J. Wang, S. Q. Xu, S. W. Zhou, W. Xu, M. Leary, P. Choong, Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review, Biomaterials, 83 (2016), 127-141. doi: 10.1016/j.biomaterials.2016.01.012
    [46] S. Nelaturi, W. Kim, T. Kurtoglu, Manufacturability feedback and model correction for additive manufacturing, J. Manuf. Sci. Eng., 137 (2015), 021015. doi: 10.1115/1.4029374
    [47] D. Thomas, The development of design rules for selective laser melting, Ph.D. thesis, University of Wales, 2009.
    [48] D. Wang, Y. Q. Yang, Z. H. Yi, X. B. Su, Research on the fabricating quality optimization of the overhanging surface in SLM process, Int. J. Adv. Manuf. Technol., 65 (2013), 1471-1484. doi: 10.1007/s00170-012-4271-4
    [49] R. Mertens, S. Clijsters, K. Kempen, J. P. Kruth, Optimization of scan strategies in selective laser melting of aluminum parts with downfacing areas, J. Manuf. Sci. Eng., 136 (2014), 061012. doi: 10.1115/1.4028620
    [50] J. C. Jiang, J. Stringer, X. Xu, R. Y. Zhong, Investigation of printable threshold overhang angle in extrusion-based additive manufacturing for reducing support waste, Int. J. Comput. Integr. Manuf., 31 (2018), 961-969. doi: 10.1080/0951192X.2018.1466398
    [51] J. C. Jiang, X. Xu, J. Stringer, Optimization of process planning for reducing material waste in extrusion based additive manufacturing, Rob. Comput. Integr. Manuf., 59 (2019), 317-325. doi: 10.1016/j.rcim.2019.05.007
    [52] M. Leary, L. Merli, F. Torti, M. Mazur, M. Brandt, Optimal topology for additive manufacture: A method for enabling additive manufacture of support-free optimal structures, Mater. Des., 63 (2014), 678-690. doi: 10.1016/j.matdes.2014.06.015
    [53] X. Guo, J. H. Zhou, W. S. Zhang, Z. L. Du, C. Liu, Y. Liu, Self-supporting structure design in additive manufacturing through explicit topology optimization, Comput. Methods Appl. Mech. Eng., 323 (2017), 27-63. doi: 10.1016/j.cma.2017.05.003
    [54] R. L. Moritz, E. Reich, M. Schwarz, M. Bernt, M. Middendorf, Refined ranking relations for selection of solutions in multi objective metaheuristics, Eur. J. Oper. Res., 243 (2015), 454-464. doi: 10.1016/j.ejor.2014.10.044
    [55] J. K. Liu, A. T. Gaynor, S. K. Chen, Z. Kang, K. Suresh, A. Takezawa, et al., Current and future trends in topology optimization for additive manufacturing, Struct. Multidiscip. Optim., 57 (2018), 2457-2483. doi: 10.1007/s00158-018-1994-3
    [56] L. Meng, W. H. Zhang, D. L. Quan, G. H. Shi, L. Tang, Y. L. Hou, et al., From topology optimization design to additive manufacturing: Todays success and tomorrows roadmap, Arch. Comput. Methods Eng., 27 (2020), 805-830. doi: 10.1007/s11831-019-09331-1
    [57] L. Zadeh, Optimality and non-scalar-valued performance criteria, IEEE Trans. Autom. Control, 8 (1963), 59-60. doi: 10.1109/TAC.1963.1105511
    [58] A. M. Jubril, A nonlinear weights selection in weighted sum for convex multiobjective optimization, Facta Univ., 27 (2012), 357-372.
    [59] R. T. Marler, J. S. Arora, The weighted sum method for multi-objective optimization: New insights, Struct. Multidiscip. Optim., 41 (2010), 853-862. doi: 10.1007/s00158-009-0460-7
    [60] I. Turevsky, K. Suresh, Efficient generation of Pareto-optimal topologies for compliance optimization, Int. J. Numer. Methods Eng., 87 (2011), 1207-1228. doi: 10.1002/nme.3165
    [61] F. Zhao, A meshless Pareto-optimal method for topology optimization, Eng. Anal. Boundary Elem., 37 (2013), 1625-1631. doi: 10.1016/j.enganabound.2013.09.010
    [62] S. A. Gebrezgabher, M. P. Meuwissen, A. G. O. Lansink, A multiple criteria decision making approach to manure management systems in the Netherlands, Eur. J. Oper. Res., 232 (2014), 643-653. doi: 10.1016/j.ejor.2013.08.006
    [63] P. L. Yu, A class of solutions for group decision problems, Manage. Sci., 19 (1973), 841-971. doi: 10.1287/mnsc.19.8.841
    [64] S. Choi, S. Kim, J. Park, S. Han, Multi-objective optimization of the inner reinforcement for a vehicles hood considering static stiffness and natural frequency, Int. J. Autom. Technol., 8 (2007), 337-342.
    [65] K. H. Cho, J. Y. Park, S. P. Ryu, S. Y. Han, Reliability-based topology optimization based on bidirectional evolutionary structural optimization using multi-objective sensitivity numbers, Int. J. Autom. Technol., 12 (2011), 849-856. doi: 10.1007/s12239-011-0097-6
    [66] Q. H. Zhao, X. K. Chen, L. Wang, J. F. Zhu, Z. D. Ma, Y. Lin, Simulation and experimental validation of powertrain mounting bracket design obtained from multi-objective topology optimization, Adv. Mech. Eng., 7 (2015), 1-10.
    [67] K. S. Raju, P. Sonali, D. N. Kumar, Ranking of CMIP5-based global climate models for India using compromise programming, Theor. Appl. Climatol., 128 (2017), 563-574. doi: 10.1007/s00704-015-1721-6
    [68] J. Koski, R. Silvennoinen, Norm methods and partial weighting in multicriterion optimization of structures, Int. J. Numer. Methods Eng., 24 (1987), 1101-1121. doi: 10.1002/nme.1620240606
    [69] R. T. Marler, J. S. Arora, Function-transformation methods for multi-objective optimization, Eng. Optim., 37 (2005), 551-570. doi: 10.1080/03052150500114289
    [70] K. A. Proos, G. P. Steven, O. M. Querin, Y. M. Xie, Multicriterion evolutionary structural optimization using the weighting and the global criterion methods, AIAA J., 39 (2001), 2006-2012. doi: 10.2514/2.1193
    [71] I. Das, J. E. Dennis, A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems, Struct. Optim., 14, (1997), 63-69. doi: 10.1007/BF01197559
    [72] A. Messac, C. A. Mattson, Generating well-distributed sets of Pareto points for engineering design using physical programming, Optim. Eng., 3 (2002), 431-450. doi: 10.1023/A:1021179727569
    [73] K. Izui, T. Yamada, S. Nishiwaki, K. Tanaka, Multiobjective optimization using an aggregative gradient-based method, Struct. Multidiscip. Optim., 51 (2015), 173-182. doi: 10.1007/s00158-014-1125-8
    [74] Y. Sato, K. Izui, T. Yamada, S. Nishiwaki, Gradient-based multiobjective optimization using a distance constraint technique and point replacement, Eng. Optim., 48 (2016), 1226-1250. doi: 10.1080/0305215X.2015.1111068
    [75] Y. Sato, K. Izui, T. Yamada, S. Nishiwaki, Pareto frontier exploration in multiobjective topology optimization using adaptive weighting and point selection schemes, Struct. Multidiscip. Optim., 55 (2017), 409-422. doi: 10.1007/s00158-016-1499-x
    [76] Y. Sato, K. Yaji, K. Izui, T. Yamada, S. Nishiwaki, Topology optimization of a no-moving-part valve incorporating Pareto frontier exploration, Struct. Multidiscip. Optim., 56 (2017), 839-851. doi: 10.1007/s00158-017-1690-8
    [77] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6 (2002), 182-197. doi: 10.1109/4235.996017
    [78] Y. Sato, K. Yaji, K. Izui, T. Yamada, S. Nishiwaki, An optimum design method for a thermal-fluid device incorporating multiobjective topology optimization with an adaptive weighting scheme, J. Mech. Des., 140 (2018), 031402. doi: 10.1115/1.4038209
    [79] Y. Sato, K. Izui, T. Yamada, S. Nishiwaki, Data mining based on clustering and association rule analysis for knowledge discovery in multiobjective topology optimization, Expert Syst. Appl., 119 (2019), 247-261. doi: 10.1016/j.eswa.2018.10.047
    [80] J. G. Lin, Multiple-objective problems: Pareto-optimal solutions by method of proper equality constraints, IEEE Trans. Autom. Control, 21 (1976), 641-650. doi: 10.1109/TAC.1976.1101338
    [81] K. Suresh, A 199-line Matlab code for Pareto-optimal tracing in topology optimization, Struct. Multidiscip. Optim., 42 (2010), 665-679. doi: 10.1007/s00158-010-0534-6
    [82] K. Suresh, Efficient generation of large-scale Pareto-optimal topologies, Struct. Multidiscip. Optim., 47 (2013), 49-61. doi: 10.1007/s00158-012-0807-3
    [83] S. G. Deng, K. Suresh, Multi-constrained topology optimization via the topological sensitivity, Struct. Multidiscip. Optim., 51 (2015), 987-1001. doi: 10.1007/s00158-014-1188-6
    [84] A. M. Mirzendehdel, B. Rankouhi, K. Suresh, Strength-based topology optimization for anisotropic parts, Addit. Manuf., 19 (2018), 104-113.
    [85] A. M. Mirzendehdel, K. Suresh, A Pareto-optimal approach to multimaterial topology optimization, J. Mech. Des., 137 (2015), 101701. doi: 10.1115/1.4031088
    [86] A. Sutradhar, J. Park, P. Haghighi, J. Kresslein, D. Detwiler, J. J. Shah, Incorporating manufacturing constraints in topology optimization methods: A survey, in: ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Ohio, USA, 2017. Available from: https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-abstract/IDETCCIE2017/58110/V001T02A073/259089.
    [87] G. Allaire, C. Dapogny, R. Estevez, A. Faure, G. Michailidis, Structural optimization under overhang constraints imposed by additive manufacturing technologies, J. Comput. Phys., 351 (2017), 295-328. doi: 10.1016/j.jcp.2017.09.041
    [88] S. C. Subedi, C. S. Verma, K. Suresh, A review of methods for the geometric post-processing of topology optimized models, J. Comput. Inf. Sci. Eng., 20 (2020), 060801. doi: 10.1115/1.4047429
    [89] P. Das, K. Mhapsekar, S. Chowdhury, R. Samant, S. Anand, Selection of build orientation for optimal support structures and minimum part errors in additive manufacturing, Comput. Aided Des. Appl., 14 (2017), 1-13.
    [90] K. L. Hu, S. Jin, C. C. Wang, Support slimming for single material based additive manufacturing, Comput. Aided Des., 65 (2015), 1-10. doi: 10.1016/j.cad.2015.03.001
    [91] D. S. Thomas, S. W. Gilbert, Costs and cost effectiveness of additive manufacturing, NIST Spec. Publ., 1176 (2014), 12.
    [92] G. Strano, L. Hao, R. M. Everson, K. E. Evans, A new approach to the design and optimisation of support structures in additive manufacturing, Int. J. Adv. Manuf. Technol., 66 (2013), 1247-1254. doi: 10.1007/s00170-012-4403-x
    [93] J. Vanek, J. A. G. Galicia, B. Benes, Clever support: Efficient support structure generation for digital fabrication, Computer Graphics Forum, 33, 2014,117-125. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12437.
    [94] J. Dumas, J. Hergel, S. Lefebvre, Bridging the gap: Automated steady scaffoldings for 3D printing, ACM Trans. Graphics, 33 (2014), 98.
    [95] Y. H. Kuo, C. C. Cheng, Y. S. Lin, C. H. San, Support structure design in additive manufacturing based on topology optimization, Struct. Multidiscip. Optim., 57 (2018), 183-195. doi: 10.1007/s00158-017-1743-z
    [96] F. Mezzadri, V. Bouriakov, X. P. Qian, Topology optimization of self-supporting support structures for additive manufacturing, Addit. Manuf., 21 (2018), 666-682.
    [97] R. Ranjan, R. Samant, S. Anand, Integration of design for manufacturing methods with topology optimization in additive manufacturing, J. Manuf. Sci. Eng., 139 (2017), 061007. doi: 10.1115/1.4035216
    [98] K. Liu, A. Tovar, An efficient 3D topology optimization code written in Matlab, Struct. Multidiscip. Optim., 50 (2014), 1175-1196. doi: 10.1007/s00158-014-1107-x
    [99] A. Panesar, M. Abdi, D. Hickman, I. Ashcroft, Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing, Addit. Manuf., 19 (2018), 81-94.
    [100] L. Cheng, A. To, Part-scale build orientation optimization for minimizing residual stress and support volume for metal additive manufacturing: Theory and experimental validation, Comput. Aided Des., 113 (2019), 1-23. doi: 10.1016/j.cad.2019.03.004
    [101] L. Cheng, X. Liang, J. X. Bai, Q. Chen, J. Lemon, A. To, On utilizing topology optimization to design support structure to prevent residual stress induced build failure in laser powder bed metal additive manufacturing, Addit. Manuf., 27 (2019), 290-304.
    [102] A. T. Gaynor, N. A. Meisel, C. B. Williams, J. K. Guest, Topology optimization for additive manufacturing: Considering maximum overhang constraint, in: 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Atlanta, GA, 2014. Available from: https://arc.aiaa.org/doi/10.2514/6.2014-2036.
    [103] A. T. Gaynor, J. K. Guest, Topology optimization considering overhang constraints: Eliminating sacrificial support material in additive manufacturing through design, Struct. Multidiscip. Optim., 54 (2016), 1157-1172. doi: 10.1007/s00158-016-1551-x
    [104] M. Langelaar, Topology optimization of 3D self-supporting structures for additive manufacturing, Addit. Manuf., 12 (2016) 60-70.
    [105] M. Langelaar, An additive manufacturing filter for topology optimization of print-ready designs, Struct. Multidiscip. Optim., 55 (2017), 871-883. doi: 10.1007/s00158-016-1522-2
    [106] B. Barroqueiro, A. Andrade-Campos, R. A. F. Valente, Designing self supported SLM structures via topology optimization, J. Manuf. Mater. Process., 3 (2019), 68.
    [107] Y. F. Fu, B. Rolfe, N. S. L. Chiu, Y. N. Wang, X. D. Huang, K. Ghabraie, Design and experimental validation of self-supporting topologies for additive manufacturing, Virtual Phys. Prototyping, 14 (2019), 382-394. doi: 10.1080/17452759.2019.1637023
    [108] Y. F. Fu, B. Rolfe, N. S. L. Chiu, Y. N. Wang, X. D. Huang, K. Ghabraie, Parametric studies and manufacturability experiments on smooth self-supporting topologies, Virtual Phys. Prototyping, 15 (2020), 22-34. doi: 10.1080/17452759.2019.1644185
    [109] E. van de Ven, R. Maas, C. Ayas, M. Langelaar, F. van Keulen, Continuous front propagation-based overhang control for topology optimization with additive manufacturing, Struct. Multidiscip. Optim., 57 (2018), 2075-2091.
    [110] A. G. Jimenez, R. A. Loyola, J. Santamaría, I. F. de Bustos, A new overhang constraint for topology optimization of self-supporting structures in additive manufacturing, Struct. Multidiscip. Optim., 58 (2018), 2003-2017.
    [111] A. Garaigordobil, R. Ansola, E. Vegueria, I. Fernandez, Overhang constraint for topology optimization of self-supported compliant mechanisms considering additive manufacturing, Comput. Aided Des., 109 (2019), 33-48. doi: 10.1016/j.cad.2018.12.006
    [112] Y. H. Kuo, C. C. Cheng, Self-supporting structure design for additive manufacturing by using a logistic aggregate function, Struct. Multidiscip. Optim., 2019 (2019), 1-13.
    [113] K. Q. Zhang, G. D. Cheng, L. Xu, Topology optimization considering overhang constraint in additive manufacturing, Comput. Struct., 212 (2019), 86-100. doi: 10.1016/j.compstruc.2018.10.011
    [114] G. Allaire, C. Dapogny, R. Estevez, A. Faure, G. Michailidis, Structural optimization under overhang constraints imposed by additive manufacturing processes: An overview of some recent results, Appl. Math. Nonlinear Sci., 2 (2017), 385-402. doi: 10.21042/AMNS.2017.2.00031
    [115] G. Allaire, C. Dapogny, A. Faure, G. Michailidis, A model of layer by layer mechanical constraint for additive manufacturing in shape and topology optimization, in: 12th World Congress on Structural and Multidisciplinary Optimization (WCSMO12), Brunswick, Germany, 2017. Available from: https://hal.archives-ouvertes.fr/hal-01536668/.
    [116] G. Allaire, C. Dapogny, A. Faure, G. Michailidis, Shape optimization of a layer by layer mechanical constraint for additive manufacturing, C. R. Math., 355 (2017), 699-717. doi: 10.1016/j.crma.2017.04.008
    [117] J. K. Liu, A. C. To, Deposition path planning-integrated structural topology optimization for 3D additive manufacturing subject to self-support constraint, Comput. Aided Des., 91 (2017), 27-45. doi: 10.1016/j.cad.2017.05.003
    [118] J. K. Liu, Y. S. Ma, A. J. Qureshi, R. Ahmad, Light-weight shape and topology optimization with hybrid deposition path planning for FDM parts, Int. J. Adv. Manuf. Technol., 97 (2018), 1123-1135. doi: 10.1007/s00170-018-1955-4
    [119] W. H. Zhang, L. Zhou, Topology optimization of self-supporting structures with polygon features for additive manufacturing, Comput. Methods Appl. Mech. Eng., 334 (2018), 56-78. doi: 10.1016/j.cma.2018.01.037
    [120] J. Q. Huang, Q. Chen, H. Jiang, B. Zou, L. Li, J. K. Liu, et al., A survey of design methods for material extrusion polymer 3d printing, Virtual Phys. Prototyping, 15 (2020), 148-162. doi: 10.1080/17452759.2019.1708027
    [121] J. Liu, H. Yu, Self-support topology optimization with horizontal overhangs for additive manufacturing, J. Manuf. Sci. Eng., 142 (2020), 091003. doi: 10.1115/1.4047352
    [122] Y. Mass, O. Amir, Topology optimization for additive manufacturing: Accounting for overhang limitations using a virtual skeleton, Addit. Manuf., 18 (2017), 58-73.
    [123] A. M. Driessen, Overhang constraint in topology optimisation for additive manufacturing: A density gradient based approach, Master's thesis, Delft University of Technology, 2016.
    [124] M. Langelaar, Combined optimization of part topology, support structure layout and build orientation for additive manufacturing, Struct. Multidiscip. Optim., 57 (2018), 1985-2004.
    [125] J. K. Guest, J. H. Prévost, T. Belytschko, Achieving minimum length scale in topology optimization using nodal design variables and projection functions, Int. J. Numer. Methods Eng., 61 (2004), 238-254. doi: 10.1002/nme.1064
    [126] J. K. Guest, Imposing maximum length scale in topology optimization, Struct. Multidiscip. Optim., 37 (2009), 463-473. doi: 10.1007/s00158-008-0250-7
    [127] J. K. Guest, Topology optimization with multiple phase projection, Comput. Methods Appl. Mech. Eng., 199 (2009), 123-135. doi: 10.1016/j.cma.2009.09.023
    [128] W. S. Zhang, W. L. Zhong, X. Guo, An explicit length scale control approach in SIMP-based topology optimization, Comput. Methods Appl. Mech. Eng., 282 (2014), 71-86. doi: 10.1016/j.cma.2014.08.027
    [129] M. D. Zhou, B. S. Lazarov, F. W. Wang, O. Sigmund, Minimum length scale in topology optimization by geometric constraints, Comput. Methods Appl. Mech. Eng., 293 (2015), 266-282. doi: 10.1016/j.cma.2015.05.003
    [130] W. S. Zhang, D. Li, J. Zhang, X. Guo, Minimum length scale control in structural topology optimization based on the Moving Morphable Components (MMC) approach, Comput. Methods Appl. Mech. Eng., 311 (2016), 327-355. doi: 10.1016/j.cma.2016.08.022
    [131] G. Allaire, F. Jouve, G. Michailidis, Thickness control in structural optimization via a level set method, Struct. Multidiscip. Optim., 53 (2016), 1349-1382. doi: 10.1007/s00158-016-1453-y
    [132] L. Hägg, E. Wadbro, On minimum length scale control in density based topology optimization, Struct. Multidiscip. Optim., 58 (2018), 1015-1032. doi: 10.1007/s00158-018-1944-0
    [133] X. P. Qian, Undercut and overhang angle control in topology optimization: A density gradient based integral approach, Int. J. Numer. Methods Eng., 111 (2017), 247-272. doi: 10.1002/nme.5461
    [134] S. R. Mohan, S. Simhambhatla, Adopting feature resolution and material distribution constraints into topology optimisation of additive manufacturing components, Virtual Phys. Prototyping, 14 (2019), 79-91. doi: 10.1080/17452759.2018.1501275
    [135] J. K. Liu, Piecewise length scale control for topology optimization with an irregular design domain, Comput. Methods Appl. Mech. Eng., 351 (2019), 744-765. doi: 10.1016/j.cma.2019.04.014
    [136] J. K. Liu, Y. F. Zheng, R. Ahmad, J. Y. Tang, Y. S. Ma, Minimum length scale constraints in multiscale topology optimisation for additive manufacturing, Virtual Phys. Prototyping, 14 (2019) 229-241. doi: 10.1080/17452759.2019.1584944
    [137] S. T. Liu, Q. H. Li, W. J. Chen, L. Y. Tong, G. D. Cheng, An identification method for enclosed voids restriction in manufacturability design for additive manufacturing structures, Front. Mech. Eng., 10 (2015), 126-137. doi: 10.1007/s11465-015-0340-3
    [138] Q. H. Li, W. J. Chen, S. T. Liu, H. R. Fan, Topology optimization design of cast parts based on virtual temperature method, Comput. Aided Des., 94 (2018), 28-40. doi: 10.1016/j.cad.2017.08.002
    [139] L. Zhou, W. H. Zhang, Topology optimization method with elimination of enclosed voids, Struct. Multidiscip. Optim., 60 (2019), 117-136. doi: 10.1007/s00158-019-02204-y
    [140] Y. L. Xiong, S. Yao, Z. L. Zhao, Y. M. Xie, A new approach to eliminating enclosed voids in topology optimization for additive manufacturing, Addit. Manuf., 32 (2020), 101006.
    [141] K. Suresh, A. Ramani, A. Kaushik, An adaptive weighting strategy for multi-load topology optimization, in: ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, USA, 2012. Available from: https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-abstract/IDETCCIE2012/45011/1295/254817.
    [142] H. Li, L. Gao, P. G. Li, Topology optimization of structures under multiple loading cases with a new compliance-volume product, Eng. Optim., 46 (2014), 725-744. doi: 10.1080/0305215X.2013.800054
    [143] M. Baumers, L. Beltrametti, A. Gasparre, R. Hague, Informing additive manufacturing technology adoption: Total cost and the impact of capacity utilisation, Int. J. Prod. Res., 55 (2017), 6957-6970. doi: 10.1080/00207543.2017.1334978
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5719) PDF downloads(449) Cited by(15)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog