Citation: Yanxiang Tan. Dynamics analysis of Mackey-Glass model with two variable delays[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 4513-4526. doi: 10.3934/mbe.2020249
[1] | H. Hu, X. Yuan, L. Huang, C. Huang, Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks, Math. Biosci. Eng., 16 (2019), 5729-5749. |
[2] | C. Qian, Y. Hu, Novel stability criteria on nonlinear density-dependent mortality Nicholson's blowflies systems in asymptotically almost periodic environments, J. Inequal. Appl., 2020 (2020), 13. |
[3] | C. Huang, H. Zhang, L. Huang, Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear density-dependent mortality term, Commun. Pure Appl. Anal., 18 (2019), 3337-3349. |
[4] | Y. Tan, C. Huang, B. Sun, T. Wang, Dynamics of a class of delayed reaction-diffusion systems with Neumann boundary condition, J. Math. Anal. Appl., 458 (2018), 1115-1130. |
[5] | C. Huang, X. Long, L. Huang, S. Fu, Stability of almost periodic Nicholson's blowflies model involving patch structure and mortality terms, Canad. Math. Bull., 63 (2020), 405-422. |
[6] | C. Huang, H. Zhang, J. Cao, H. Hu, Stability and Hopf bifurcation of a delayed prey-predator model with disease in the predator, Internat. J. Bifur. Chaos Appl., 29 (2019), 1950091. |
[7] | X. Long, S. Gong, New results on stability of Nicholson's blowflies equation with multiple pairs of time-varying delays, Appl. Math. Lett., 100 (2020), 106027. |
[8] | C. Huang, S. Wen, M. Li, F. Wen, X. Yang, An empirical evaluation of the influential nodes for stock market network: Chinese a shares case, Financ. Res. Lett., (2020), 101517. |
[9] | X. Yang, S. Wen, Z. Liu, C. Li, Dynamic properties of foreign exchange complex network, Mathematics, 7 (2019), 832. |
[10] | C. Huang, H. Yang, J. Cao, Weighted pseudo almost periodicity of multi-proportional delayed shunting inhibitory cellular neural networks with D operator, Discrete Contin. Dyn. Syst. Ser. S, 2020. |
[11] | C. Huang, X. Yang, J. Cao, Stability analysis of Nicholson's blowflies equation with two different delays, Math. Comput. Simulation, 171 (2020), 201-206. |
[12] | M. Iswarya, R. Raja, G. Rajchakit, J. Cao, J. Alzabut, C, Huang, Existence, uniqueness and exponential stability of periodic solution for discrete-time delayed BAM neural networks based on coincidence degree theory and graph theoretic method, Mathematics, 7 (2019), 1055. |
[13] | C. Huang, Z. Yang, T. Yi, X. Zou, On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities, J. Differential Equations, 256 (2014), 2101- 2114. |
[14] | C. Huang, J. Cao, F. Wen, X. Yang, Stability analysis of SIR model with distributed delay on complex networks, PLoS One, 11 (2016), e0158813. |
[15] | M. Mackey, L. Glass, Oscillation and chaos in physiological control systems, Science, 197 (1977), 287-289. |
[16] | C. Huang, X. Long, J. Cao, Stability of anti-periodic recurrent neural networks with multiproportional delays, Math. Meth. Appl. Sci., 43 (2020), 6093-6102. |
[17] | L. Berezansky, E. Braverman, Mackey-Glass equation with variable coefficients, Appl. Math. Comput., 51 (2006), 1-16. |
[18] | L. Berezansky, E. Braverman, L. Idels, Mackey-Glass model of hematopoiesis with non-monotone feedback: Stability, oscillation and control, Appl. Math. Comput., 219 (2013), 6268-6283. |
[19] | W. Wang, Global exponential stability for the Mackey-Glass model of respiratory dynamics with a control term, Math. Meth. Appl. Sci., 39 (2016), 606-613. |
[20] | L. Berezansky, E. Braverman, A note on stability of Mackey-Glass equations with two delays, J. Math. Anal. Appl., 450 (2017), 1208-1228. |
[21] | C. Huang, J. Wang, L. Huang, New results on asymptotically almost periodicity of delayed Nicholson-type system involving patch structure, Electron. J. Differ. Equ., 2020 (2020), 1-17. |
[22] | J. Alzabut, Y. Bolat, T. Abdeljawad, Almost periodic dynamics of a discrete Nicholson's blowflies model involving a linear harvesting term, Adv. Differ. Equ., 2012 (2012), 158. |
[23] | S. Saker, J. Alzabut, Periodic solutions, global attractivity and oscillation of an impulsive delay host-macroparasite model, Math. Comput. Model, 45 (2007), 531-543. |
[24] | S. Saker, J. Alzabut, On the impulsive delay hematopoiesis model with periodic coefficients, Rocky Mountain J. Math., 39 (2009), 1657-1688. |
[25] | J. Alzabut, J. Nieto, G. Stamov, Existence and exponential stability of positive almost periodic solutions s for a model of hematopoiesis, Bound. Value Probl., (2009), 127510. |
[26] | J. Alzabut, Almost periodic solutions for an impulsive delay Nicholson's blowflies model, J. Comput. Appl. Math., 234 (2010), 233-239. |
[27] | Y. Xu, Q. Cao, X. Guo, Stability on a patch structure Nicholson's blowflies systeminvolving distinctive delays, Appl. Math. Lett., 105 (2020), 106340. |
[28] | C. Huang, Y. Qiao, L. Huang, R. Agarwal, Dynamical behaviors of a food-chain model with stage structure and time delays, Adv. Difference Equ., 2018 (2018), 186. |
[29] | L. Duan, X. Fang, C. Huang, Global exponential convergence in a delayed almost periodic Nicholson's blowflies model with discontinuous harvesting, Math. Meth. Appl.Sci., 41 (2018), 1954-1965. |
[30] | H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer New York, 2011. |
[31] | H. A. El-Morshedy, A. Ruiz-Herrera, Global convergence to equilibria in non-monotone delay differential equations, Proc. Amer. Math. Soc., 147 (2019), 2095-2105. |
[32] | I. Győri, F. Hartung, N. A. Mohamady, Permanence in a class of delay differential equations with mixed monotonicity, Electron. J. Qual. Theory Differ. Equ., 53 (2018), 1-21. |
[33] | L. Berezansky, E. Braverman, L. Idels, The Mackey-Glass model of respiratory dynamics: Review and new results, Nonlinear Anal., 75 (2012), 6034-6052. |
[34] | L. Berezansky, E. Braverman, L. Idels, Mackey-Glass model of hematopoiesis with monotone feedback revisited, Appl. Math. Comput., 219 (2013), 4892-4907. |