Citation: Nicolas Ratto, Martine Marion, Vitaly Volpert. Existence of pulses for a reaction-diffusion system of blood coagulation in flow[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4196-4212. doi: 10.3934/mbe.2019209
[1] | T. Galochkina, H. Ouzzane, A. Bouchnita, et al., Traveling wave solutions in the mathematical model of blood coagulation. Appl. Anal., 96 (2017), 2891–2905. |
[2] | V. I. Zarnitsina, A. V. Pokhilko and F. I. Ataullakhanov, A mathematical model for the spatio-temporal dynamics of intrinsic pathway of blood coagulation. I. The model description, Thromb. Res., 84 (1996), 225–236. |
[3] | Y. V. Krasotkina, E. I. Sinauridze and F. I. Ataullakhanov, Spatiotemporal dynamics of fibrin formation and spreading of active thrombin entering non-recalcified plasma by diffusion, BBA- Bioenergetics-General Subjects, 1474 (2000), 337–345. |
[4] | E. A. Pogorelova and A. I. Lobanov, Influence of enzymatic reactions on blood coagulation autowave, Biophysics, 59 (2014), 10–118. |
[5] | A. A. Tokarev, Y. V. Krasotkina, M. V. Ovanesov, et al., Spatial dynamics of contact-activated fibrin clot formation in vitro and in silico in haemophilia b: Effects of severity and ahemphil b treatment, Math. Modell. Nat. Phenom., 1 (2006), 124–137. |
[6] | V. I. Zarnitsina, F. I. Ataullakhanov, A. I. Lobanov, et al., Dynamics of spatially nonuniform patterning in the model of blood coagulation, Chaos, 11 (2001), 57–70. |
[7] | A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems, AMS, Translations of Mathematical Monographs, 1994 |
[8] | M. Marion and V. Volpert, Existence of pulses for a monotone reaction-diffusion system. J Pure Appl. Funct. Anal., 1 (2016), 97–122. |
[9] | N. Ratto, M. Marion and V. Volpert, Existence of pulses for a reaction-diffusion system of blood coagulation, Topol. Methods Nonlinear Anal. (2019), in press. |
[10] | V. Volpert and A. Volpert, Properness and topological degree for general elliptic operators, Abstr. Appl. Anal., 3 (2003), 129–182. |
[11] | V. Volpert, Elliptic partial differential equations. Volume 1. Fredholm theory of elliptic problems in unbounded domains, Math. Gazette, 98 (2014), 172–174. |
[12] | A. V. Belyaev, J. L. Dunster, J. M. Gibbins, et al., Modeling thrombosis in silico: Frontiers, challenges, unresolved problems and milestones. Phys. Life Rev., 26 (2018), 57–95. |
[13] | A. Fasano and A. Sequeira, Hemomath, The Mathematics of Blood, Springer, 2017. |
[14] | K. G. Mann, T. Orfeo, S. Butenas, et al., Blood coagulation dynamics in haemostasis, Hemostaseologie, 29 (2009), 7–16. |
[15] | A. Bouchnita, T. Galochkina, P. Kurbatova, et al., Conditions of microvessel occlusion for blood coagulation in flow, Int. J. Numer. Meth. Bio., (2017), e2850. |
[16] | B. Osterud, E. S. Breimo and J. O. Olsen, Blood borne tissue factor revisited, Thromb. Res., 122 (2008), 432–344. |
[17] | J. I. Weitz and J. C. Fredenburgh, Platelet polyphosphate: the long and the short of it, Blood, 129 (2017), 1574. |
[18] | J. C. Chapin and K. A. Hajjar, Fibrinolysis and the control of blood coagulation, Blood Rev., 29 (2015), 17–24. |