Citation: Zhiguo Qu, Leiming Jiang, Le Sun, Mingming Wang, Xiaojun Wang. Continuous variable quantum steganography protocol based on quantum identity[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4182-4195. doi: 10.3934/mbe.2019208
[1] | C. H. Bennett and G. Brassard, Quantum cryptography: public-key distribution and coin tossing, Theor. Comput. Sci., 560 (2014), 7–11. |
[2] | E. Diamanti, H. K. Lo and B. Qi, Practical challenges in quantum key distribution, NPJ Quantum Inform., 2 (2017), 1–9. |
[3] | M. Tomamichel and A. Leverrier, A largely self-contained and complete security proof for quantum key distribution, Quantum, 1 (2017), 14–23. |
[4] | W. J. Liu, Y. Xu, C. N. Yang, et al., An efficient and secure arbitrary n-party quantum key agreement protocol using Bell states, Int. J. Theor. Phys., 57 (2018), 195–207. |
[5] | H. H. Chang, J. Heo and G. J. Jin, Quantum identity authentication with single photon, Quantum Inf. Process., 16 (2017), 236–246. |
[6] | A. Tavakoli, I. Herbauts and M. ˙ zukowski, Secret sharing with a single d-level quantum system, Phys. Rev. A, 92 (2015), 1–10. |
[7] | C. M. Bai, Z. H. Li and T. T. Xu, Quantum secret sharing using the d-dimensional GHZ state, Quantum Inf. Process., 16 (2017), 59–70. |
[8] | X. B. Chen, X. Tang, G. Xu, et al., Cryptanalysis of secret sharing with a single d-level quantum system, Quantum Inf. Process., 17 (2018), 225–235. |
[9] | W. Li, J. Chen and X. Wang, Quantum secure direct communication achieved by using multi- entanglement, Int. J. Theor. Phys., 54 (2015), 100–105. |
[10] | J. Y. Hu, B. Yu and M. Y. Jing, Experimental quantum secure direct communication with single photons, Light-SCI. Appl., 5 (2016), e16144. |
[11] | W. J. Liu, Z. Y. Chen, J. S. Liu, et al., Full-blind delegating private quantum computation, Comput. Mater. Con., 56 (2018), 211–223. |
[12] | Z. G. Qu, S. Y. Wu, M. M. Wang, et al., Effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via various quantum entangled channels, Quantum Inf. Process., 16 (2017), 1–25. |
[13] | X. B. Chen, Y. R. Sun, G. Xu, et al., Controlled bidirectional remote preparation of three-qubit state, Quantum Inf. Process., 16 (2017), 244–254. |
[14] | M. M. Wang, C. Yang and R. Mousoli, Controlled cyclic remote state preparation of arbitrary qubit states, Comput. Mater. Con., 55 (2018), 321–329. |
[15] | G. Xu, X. B. Chen and J. Li, Network coding for quantum cooperative multicast, Quantum Inf. Process., 14 (2015), 4297–4307. |
[16] | Z. G. Qu, J. Keeney, S. Robitzsch, et al., Multilevel pattern mining architecture for automatic network monitoring in heterogeneous wireless communication networks, China. Commun., 13 (2016), 108–116. |
[17] | W. J. Liu, H. B. Wang, G. L. Yuan, et al., Multiparty quantum sealed-bid auction using single photons as message carrier, Quantum Inf. Process., 15 (2016), 869–879. |
[18] | W. J. Liu, P. P. Gao, W. B. Yu, et al., Quantum Relief algorithm, Quantum Inf. Process., 17 (2018), 280–290. |
[19] | J. W. Wang, T. Li, X. Y. Luo, et al., Identifying computer generated images based on quaternion central moments in color quaternion wavelet domain, IEEE T. Circ. Syst. Vid., (2018), online. DOI: 10.1109/TCSVT.2018.2867786. |
[20] | L. Liu, G. M. Tang and Y. F. Sun, Quantum steganography for multi-party covert communication, Int. J. Theor. Phys., 55 (2016), 1–11. |
[21] | T. Mihara, Multi-party quantum steganography, Int. J. Theor. Phys., 56 (2017), 1–8. |
[22] | Z. G. Qu, S. Y. Chen, S. Ji, et al., Anti-noise bidirectional quantum steganography qrotocol with large payload, Int. J. Theor. Phys., 57 (2018), 1–25. |
[23] | Z. G. Qu, T. C. Zhu and J. W. Wang, A novel quantum steganography based on Brown states, Comput. Mater. Con., 1 (2018), 47–59. |
[24] | S. Wang, J. Sang and X. Song, Least significant qubit (LSQb) information hiding algorithm for quantum image, Measurement, 73 (2015), 352–359. |
[25] | N. Jiang, N. Zhao and L. Wang, LSB based quantum image steganography algorithm, Int. J. Theor. Phys., 55 (2016), 1–17. |
[26] | Z. G. Qu, Z. W. Cheng, W. J. Liu, et al., A novel quantum image steganography algorithm based on exploiting modification direction, Multimed. Tools. Appl., (2018), online. DOI: 10.1007/s10773- 018-3716-4 |
[27] | F. Grosshans and P. Grangier, Continuous variable quantum cryptography using coherent states, Phys. Rev. Lett., 88 (2002), 057902. |
[28] | S. Olivares, M.G.A. Paris and R. Bonifacio, Teleportation improvement by inconclusive photon subtraction, Phys. Rev. A, 67 (2003), 032314. |
[29] | J. N. Wu, S. Y. Liu, L. Y. Hu, et al., Improving entanglement of even entangled coherent states by a coherent superposition of photon subtraction and addition, J. Opt. Soc. Am. B, 32 (2015), 2299. |
[30] | Y. Guo, W. Ye, H. Zhong, et al., Continuous-variable quantum key distribution with non-Gaussian quantum catalysis, Phys. Rev. A, 99 (2019), 032327. |
[31] | L. P. Van and S. L. Braunstein, Multipartite entanglement for continuous variables: a quantum teleportation network, Phys. Rev. Lett., 84 (2000), 3482–3485. |
[32] | H. Ma, P. Huang and W. Bao, Continuous-variable quantum identity authentication based on quantum teleportation, Quantum Inf. Process., 15 (2016), 2605–2620. |
[33] | C. Berrou and A. Glavieux, Near optimum error correcting coding and decoding: turbo-codes, IEEE T. Commun., 44 (1996), 1261–1271. |
[34] | R. G. Gallager, Low-density parity-check codes, IEEE Commun. Surv. Tut., 13 (2011), 3–26. |
[35] | T. C. Ralph, Continuous variable quantum cryptography, Phys. Rev. A, 61 (1999), 010303. |
[36] | W. P. Bowen, N. Treps, B. C. Buchler, et al., Experimental investigation of continuous-variable quantum teleportation, Phys. Rev. A, 67 (2003), 032302. |
[37] | J. Z. Huang, C. Weedbrook, Z. Q. Yin, et al., Quantum hacking on continuous-variable quantum key distribution system using a wavelength attack, Phys. Rev. A, 87 (2013), 062329. |