Citation: Tao Zhang, Hao Zhang, Ran Wang, Yunda Wu. A new JPEG image steganalysis technique combining rich model features and convolutional neural networks[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4069-4081. doi: 10.3934/mbe.2019201
[1] | V. Holub and J. Fridrich, Low-complexity features for jpeg steganalysis using undecimated DCT, IEEE Trans. Inf. Fore. Secu., 10(2015), 219–228. |
[2] | J. Fridrich and J. Kodovsky, Rich models for steganalysis of digital images, IEEE Trans. Inf. Fore. Secu., 7(2012), 868–882. |
[3] | V. Holub and J. Fridrich, Phase-aware projection model for steganalysis of JPEG images, Proc. SPIE, 9409(2015), 1–11. |
[4] | J. Kodovsky, J. Fridrich and V. Holub, Ensemble classifiers for steganalysis of digital media, IEEE Trans. Inf. Fore. Secu., 7(2012), 432–444. |
[5] | J. Fridrich, Steganalysis in high dimensions: fusing classifiers built on random subspaces, Proc. SPIE, 7880(2011), 181–197. |
[6] | V. Holub and J. Fridrich, Random projections of residuals for digital image steganalysis, IEEE Trans. Inf. Fore. Secu., 8(2013), 1996–2006. |
[7] | J. Kodovský and J. Fridrich, Steganalysis in high dimensions: fusing classifiers built on random subspaces, Proc. SPIE, 7880(2011), 1–13. |
[8] | S. Tan and B. Li, Stacked convolutional auto-encoders for steganalysis of digital images, Proc. IEEE APSIPA, Siem Reap, Cambodia, (2014), 1–4. |
[9] | T. Pevný, T. Filler and P. Bas, Using high-dimensional image models to perform highly undetectable steganography, Proc. IHW, (2010), 161–177. |
[10] | Y. Qian, J. Dong and W. Wang, Deep learning for steganalysis via convolutional neural networks, Proc. SPIE, 9409(2015), 1–10. |
[11] | V. Holub and J. Fridrich, Designing steganographic distortion using directional filters, Proc. IEEE IFS, (2012), 234–239. |
[12] | V. Holub, J. Fridrich and T. Denemark, Universal distortion function for steganography in an arbitrary domain, EURASIP J. Info. Sec., 2014(2014), 1–13. |
[13] | L. Pibre L, J. Pasquet and D. Ienco, Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover sourcemismatch, Proc. EI'2016, (2016), 79–95. |
[14] | Mo Chen, V. Sedighi, M. Boroumand, et al., JPEG-phase-aware convolutional neural network for steganalysis of JPEG images, Proc. IH MMSec, (2017), 1–10. |
[15] | J. Zeng, S. Tan, B. Li, et al., Large-scale JPEG image steganalysis using hybrid deep-learning framework, IEEE Trans. Info. Forens. Secu., 13(2018), 1200–1214. |
[16] | G. Xu, Deep convolutional neural network to detect JUNIWARD, Proc. IH MMSec, (2017), 1–6. |
[17] | M. Boroumand, M. Chen and J. Fridrich, Deep residual network for steganalysis of digital images. IEEE Trans. Info. Fore. Secu., 14(2019), 1181–1193. |
[18] | L. Chang, X. Den and M. Zhou, Convolution neural networks in image understanding, Acta Automat. Sinica, 42(2016), 1300–1312. |
[19] | X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, J. Mach. Lear. Rese., 9(2010), 249–256. |
[20] | S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, Proc. ICML, (2015), 448–456. |
[21] | N. Srivastava, G. Hinton and A. Krizhevsky, Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Lear. Rese., 15(2014), 1929–1958. |
[22] | L. Guo, J. Ni and Y. Shi, Uniform embedding for efficient JPEG steganography, IEEE Trans. Info. Fore. Secu., 9(2014), 814–825. |
[23] | J. Bergstra, O. Breuleux and F. Bastien, Theano: A CPU and GPU math compiler in Python, Proc. PSC, (2010), 1–7. |