Citation: Jiu-Xin Tan, Shi-Hao Li, Zi-Mei Zhang, Cui-Xia Chen, Wei Chen, Hua Tang, Hao Lin. Identification of hormone binding proteins based on machine learning methods[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 2466-2480. doi: 10.3934/mbe.2019123
[1] | G. Baumann, Growth hormone binding protein. The soluble growth hormone receptor, Minerva. Endocrinol., 27 (2002), 265–276. |
[2] | J. A. Kraut and N. E. Madias, Adverse effects of the metabolic acidosis of chronic kidney disease, Adv. Chronic. Kidney Dis., 24 (2017), 289–297. |
[3] | F. Sohm, I. Manfroid and A. Pezet, et al., Identification and modulation of a growth hormone-binding protein in rainbow trout (Oncorhynchus mykiss) plasma during seawater adaptation, Gen. Comp. Endocrinol., 111 (1998), 216–224. |
[4] | Y. Zhang and T. A. Marchant, Identification of serum GH-binding proteins in the goldfish (Carassius auratus) and comparison with mammalian GH-binding proteins, J. Endocrinol., 161 (1999), 255–262. |
[5] | I. E. Einarsdottir, N. Gong and E. Jonsson, et al., Plasma growth hormone-binding protein levels in Atlantic salmon Salmo salar during smoltification and seawater transfer, J. Fish Biol., 85 (2014), 1279–1296. |
[6] | S. Fisker, J. Frystyk and L. Skriver, et al., A simple, rapid immunometric assay for determination of functional and growth hormone-occupied growth hormone-binding protein in human serum, Eur. J. Clin. Invest., 26 (1996), 779–785. |
[7] | H. Tang, Y. W. Zhao and P. Zou, et al., HBPred: a tool to identify growth hormone-binding proteins, Int. J. Biol. Sci., 14 (2018), 957–964. |
[8] | S. Basith, B. Manavalan and T. H. Shin, et al., iGHBP: Computational identification of growth hormone binding proteins from sequences using extremely randomised tree, Comput. Struct. Biotechnol. J., 16 (2018), 412–420. |
[9] | L. Breuza, S. Poux and A. Estreicher, et al., The UniProtKB guide to the human proteome, Database (Oxford), 2016 (2016). |
[10] | L. Fu, B. Niu and Z. Zhu, et al., CD-HIT: accelerated for clustering the next-generation sequencing data, Bioinformatics, 28 (2012), 3150–3152. |
[11] | K. Tian, X. Zhao and S. S. Yau, Convex hull analysis of evolutionary and phylogenetic relationships between biological groups, J.Theor. Biol., 456 (2018), 34–40. |
[12] | I. Dubchak, I. Muchnik and S. R. Holbrook, et al., Prediction of protein folding class using global description of amino acid sequence, Proc. Natl. Acad. Sci. U S A, 92 (1995), 8700–8704. |
[13] | H. Tang, W. Chen and H. Lin, Identification of immunoglobulins using Chou's pseudo amino acid composition with feature selection technique, Mol. Biosyst., 12 (2016), 1269–1275. |
[14] | K. C. Chou, Some remarks on protein attribute prediction and pseudo amino acid composition, J. Theor. Biol., 273 (2011), 236–247. |
[15] | K. C. Chou, Prediction of protein cellular attributes using pseudo-amino acid composition, Proteins, 43 (2001), 246–255. |
[16] | F. Y. Dao, H. Yang and Z. D. Su, et al., Recent advances in conotoxin classification by using machine learning methods, Molecules, 22 (2017), in press. |
[17] | Q. Zou, S. Wan and Y. Ju, et al., Pretata: predicting TATA binding proteins with novel features and dimensionality reduction strategy, BMC System. Biol., 10 (2016), 114. |
[18] | L. Wei, R. Su and B. Wang, et al., Integration of deep feature representations and handcrafted features to improve the prediction of N6-methyladenosine sites, Neurocomputing, 324 (2019), 3–9. |
[19] | G. H. Huang and J. C. Li, Feature extractions for computationally predicting protein post-translational modifications, Curr. Bioinform., 13 (2018), 387–395. |
[20] | Q. Zou, J. Zeng and L. Cao, et al., A novel features ranking metric with application to scalable visual and bioinformatics data classification, Neurocomputing, 173 (2016), 346–354. |
[21] | H. Y. Lai, X. X. Chen and W. Chen, et al., Sequence-based predictive modeling to identify cancerlectins, Oncotarget, 8 (2017), 28169–28175. |
[22] | X. X. Chen, H. Tang and W. C. Li, et al., Identification of bacterial cell wall lyases via pseudo amino acid composition, Biomed. Res. Int., 2016 (2016), 1654623. |
[23] | X. J. Zhu, C. Q. Feng and H. Y. Lai, et al., Predicting protein structural classes for low-similarity sequences by evaluating different features, Knowled. System., 163 (2019), 787–793. |
[24] | H. Yang, W. R. Qiu and G. Q. Liu, et al., iRSpot-Pse6NC: Identifying recombination spots in Saccharomyces cerevisiae by incorporating hexamer composition into general PseKNC, Int. J. Biol. Sci., 14 (2018), 883–891. |
[25] | H. Yang, H. Tang and X. X. Chen, et al., Identification of secretory proteins in mycobacterium tuberculosis using pseudo amino acid composition, Biomed. Res. Int., 2016 (2016), 5413903. |
[26] | C. Q. Feng, Z. Y. Zhang and X. J. Zhu, et al., iTerm-PseKNC: a sequence-based tool for predicting bacterial transcriptional terminators, Bioinformatics, (2018), in press. |
[27] | F. Y. Dao, H. Lv and F. Wang, et al., Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique, Bioinformatics, (2018), in press. |
[28] | H. Lin, Z. Y. Liang and H. Tang, et al., Identifying sigma70 promoters with novel pseudo nucleotide composition, IEEE/ACM Trans. Comput. Biol. Bioinform., (2017), in press. |
[29] | W. Chen, H. Yang and P. Feng, et al., iDNA4mC: identifying DNA N4-methylcytosine sites based on nucleotide chemical properties, Bioinformatics, 33 (2017), 3518–3523. |
[30] | W. Chen, P. Feng and T. Liu, et al., Recent advances in machine learning methods for predicting heat shock proteins, Curr. Drug Metab., (2018), in press. |
[31] | D. Li, Y. Ju and Q. Zou, Protein folds prediction with hierarchical structured SVM, Curr. Proteom., 13 (2016), 79–85. |
[32] | N. Zhang, S. Yu and Y. Guo, et al., Discriminating ramos and jurkat cells with image textures from diffraction imaging flow cytometry based on a support vector machine, Curr. Bioinform., 13 (2018), 50–56. |
[33] | H. Yang, H. Lv and H. Ding, et al., iRNA-2OM: A sequence-based predictor for identifying 2'-o-methylation sites in homo sapiens, J. Comput. Biol., 25 (2018), 1266–1277. |
[34] | P. M. Feng, H. Ding and W. Chen, et al., Naive Bayes classifier with feature selection to identify phage virion proteins, Comput. Math. Methods Med., 2013 (2013), 530696. |
[35] | B. Manavalan, S. Subramaniyam and T. H. Shin, et al., Machine-learning-based prediction of cell-penetrating peptides and their uptake efficiency with improved accuracy, J. Proteom. Res., 17 (2018), 2715–2726. |
[36] | P. M. Feng, W. Chen and H. Lin, et al., iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition, Anal. Biochem., 442 (2013), 118–125. |
[37] | P. M. Feng, H. Lin and W. Chen, Identification of antioxidants from sequence information using naive Bayes, Comput. Math. Method. Med., 2013 (2013), 567529. |
[38] | P. Feng, H. Yang and H. Ding, et al., iDNA6mA-PseKNC: Identifying DNA N(6)-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC, Genomics, (2018), in press. |
[39] | W. Chen, P. M. Feng and E. Z. Deng, et al., iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition, Anal. Biochem., 462 (2014), 76–83. |
[40] | L. Z. Yuan, E. F. Yong and Z. Wei, et al., Using quadratic discriminant analysis to predict protein secondary structure based on chemical shifts, Curr. Bioinform., 12 (2017), 52–56. |
[41] | W. Chen, H. Lv, and F. Nie, et al., i6mA-Pred: Identifying DNA N6-methyladenine sites in the rice genome, Bioinformatics, (2019), in press. |
[42] | Y. Bao, S. Marini and T. Tamura, et al., Toward more accurate prediction of caspase cleavage sites: a comprehensive review of current methods, tools and features, Brief Bioinform., (2018), in press. |
[43] | H. Tang, C. M. Zhang and R. Chen, et al., Identification of secretory proteins of malaria parasite by feature selection technique, Letter. Organic Chem., 14 (2017), 621–624. |
[44] | H. Tang, R. Z. Cao and W. Wang, et al., A two-step discriminated method to identify thermophilic proteins, Int. J. Biomath., 10 (2017), in press. |
[45] | S. Patel, R. Tripathi and V. Kumari, et al., DeepInteract: Deep neural network based protein-protein interaction prediction tool, Curr. Bioinform., 12 (2017), 551–557. |
[46] | R. Z. Cao, B. Adhikari and D. Bhattacharya, et al., QAcon: single model quality assessment using protein structural and contact information with machine learning techniques, Bioinform., 33 (2017), 586–588. |
[47] | R. Cao, C. Freitas and L. Chan, et al., ProLanGO: Protein function prediction using neural machine translation based on a recurrent neural network, Molecules, 22 (2017), in press. |
[48] | B. Manavalan, T. H. Shin and M. O. Kim, et al., PIP-EL: A new ensemble learning method for improved proinflammatory peptide predictions, Front. Immunol., 9 (2018), 1783. |
[49] | B. Manavalan, T. H. Shin and G. Lee, PVP-SVM: Sequence-based prediction of phage virion proteins using a support vector machine, Front. Microbiol., 9 (2018), 476. |
[50] | T. Cui, L. Zhang and Y. Huang, et al., MNDR v2.0: an updated resource of ncRNA-disease associations in mammals, Nucleic Acids Res., 46 (2018), D371–D374. |
[51] | T. Zhang, P. Tan and L. Wang, et al., RNALocate: a resource for RNA subcellular localizations, Nucleic Acids Res., 45 (2017), D135–D138. |
[52] | Y. Yi, Y. Zhao and C. Li, et al., RAID v2.0: an updated resource of RNA-associated interactions across organisms, Nucleic Acids Res., 45 (2017), D115–D118. |
[53] | Z.Y. Liang, H.Y. Lai and H. Yang, et al., Pro54DB: a database for experimentally verified sigma-54 promoters, Bioinformatics, 33 (2017), 467–469. |
[54] | J. Song, Y. Wang and F. Li, et al., iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites, Brief Bioinform., (2018), in press. |
[55] | J. Song, F. Li and A. Leier, et al., PROSPERous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy, Bioinformatics, 34 (2018), 684–687. |
[56] | R. Cao and J. Cheng, Integrated protein function prediction by mining function associations, sequences, and protein-protein and gene-gene interaction networks, Methods, 93 (2016), 84–91. |
[57] | W. Chen, P.M. Feng and E.Z. Deng, et al., iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition, Anal. Biochem., 462 (2014), 76–83. |
[58] | I. Naseem, S. Khan and R. Togneri, et al., ECMSRC: A sparse learning approach for the prediction of extracellular matrix proteins, Curr. Bioinform., 12 (2017), 361–368. |
[59] | R. Z. Cao, D. Bhattacharya and J. Hou, et al., DeepQA: improving the estimation of single protein model quality with deep belief networks, BMC Bioinform., 17 (2016), in press. |
[60] | B. Manavalan, S. Basith and T. H. Shin, et al., MLACP: machine-learning-based prediction of anticancer peptides, Oncotarget, 8 (2017), 77121–77136. |
[61] | B. Manavalan, S. Basith and T. H. Shin, et al., mAHTPred: a sequence-based meta-predictor for improving the prediction of anti-hypertensive peptides using effective feature representation, Bioinformatics, (2018), in press. |
[62] | B. Manavalan, R. G. Govindaraj and T. H. Shin, et al., iBCE-EL: A New Ensemble Learning Framework for Improved Linear B-Cell Epitope Prediction, Front. Immunol., 9 (2018), 1695. |
[63] | B. Manavalan, T. H. Shin and G. Lee, DHSpred: support-vector-machine-based human DNase I hypersensitive sites prediction using the optimal features selected by random forest, Oncotarget, 9 (2018), 1944–1956. |