Citation: Eric Ke Wang, liu Xi, Ruipei Sun, Fan Wang, Leyun Pan, Caixia Cheng, Antonia Dimitrakopoulou-Srauss, Nie Zhe, Yueping Li. A new deep learning model for assisted diagnosis on electrocardiogram[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 2481-2491. doi: 10.3934/mbe.2019124
[1] | K. Mahantapas, M. Nasipuri and D. K. Basu, Knowledge-based ECG interpretation: a critical review, Pat. Rec., 33.3(2000), 351–373. |
[2] | M. G. Tsipouras, D. I. Fotiadis and D. Sideris, An arrhythmia classification system based on the RR-interval signal, Art. Intel. Med., 33.3(2005), 237–250. |
[3] | K. Daqrouq, A. Alkhateeb and M. N. Ajour, et al., Neural network and wavelet average framing percentage energy for atrial fibrillation classification, Comput. Meth. Pro. Biomed., 113.3(2014), 919–926. |
[4] | H. Huang, J. Liu and Q. Zhu, et al., A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals, BioMed. Eng. OnL., 13.1(2014), 90. |
[5] | ADDIN EN.REFLIST C. Ye, B. V. K. V. Kumar and M. T. Coimbra., Heartbeat classification using morphological and dynamic features of ECG signals, IEEE Trans. Biomed. Eng., 59.10(2012), 2930–2941. |
[6] | Y. Kutlu and D. Kuntalp, A multi-stage automatic arrhythmia recognition and classification system, Comput. Bio. Med., 41.1(2011), 37–45. |
[7] | E. D. Übeyli, Combining recurrent neural networks with eigenvector methods for classification of ECG beats, Dig. Sig. Proc., 19(2009), 320–329. |
[8] | E.D.Übeyli, Recurrent neural networks with composite features for detection of electrocardiographic changes in partial epileptic patients, Comput. Bio. Med., 38.3(2008), 401–410. |
[9] | W. K. Lei, B. N. Li and M. C. Dong, et al., An application of morphological feature extraction and support vector machines in computerized ECG interpretation, IEEE Six. Mex. Inter. Conf. Arti. Intel. Spec. Ses., 64.3(2007), 701–712. |
[10] | X. H. Li, L. Shu and H. Hu, Kernel-based nonlinear dimensionality reduction for electrocardiogram recognition, Neu. Comp. App., 18.8(2009), 1013–1020. |
[11] | G. Doquire, G. D. Lannoy and D Francois, et al., Feature Selection for Interpatient Supervised Heart Beat Classification, Comp. Intel. Neur., (2011), 1–9. |
[12] | R. J. Martis, C. Chakraborty and A. K. Ray., A two-stage mechanism for registration and classification of ECG using Gaussian mixture model, Pat. Rec., 42.11(2009), 2979–2988. |
[13] | W. S. K. Esbensen and P. Geladi, Principal component analysis, Chem. and intel. lab. sys., 2(1987), 37–52. |
[14] | A. J. Izenman, Linear discriminant analysis, Mod. Multi. Stati. Tech., (2013), 237–280. |
[15] | A. J. Bell and T. J. Sejnowski, The "independent components" of natural scenes are edge filters, Vis. Res., 37(1997), 3327–3338. |
[16] | C. Cortes, and V. Vapnik, Support vector machine. Mach.Learn., 20.3(1995), 273–297. |
[17] | S. Kiranyaz, T. Ince and M. Gabbouj, Real-time patient-specific ECG classification by 1-D convolutional neural networks, IEEE Trans. Biomed. Engin., 63.3(2016), 664–675. |
[18] | M. Schuster and K. K. Paliwal, Bidirectional recurrent neural networks, IEEE Trans. Sign. Proc.,45.11( 1997), 2673–2681. |
[19] | K. He, X. Y. Zhang and S. Q. Ren, et al., Deep residual learning for image recognition, Proc. IEEE Conf. Comp. Pat. Rec., (2016). |
[20] | H. Zhu and J. Dong, An R-peak detection method based on peaks of Shannon energy envelope, Biomed. Sign. Proc. Cont., 8.5(2013), 466–474. |
[21] | D. E. Lake and J. R. Moorman, Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices, Ame. J. Phys.-Hea. Cir. Phys., 300.1(2010), 319–325. |
[22] | N. Hakacova, E. Tragardhjohansson and G. S. Wagner, et al., Computer-based rhythm diagnosis and its possible influence on nonexpert electrocardiogram readers, J. Elec., 45.1(2012), 18–22. |
[23] | H. Yuki, F. Hamido and O. S. Lih, et al., Computer-aided diagnosis of atrial fibrillation based on ECG signals: A Review, Info. Sci., 467(2018), 99–114. |
[24] | U. R. Acharya, H. Fujita and S. L. Oh, et al., Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals, Info. Sci., 415–416(2017), 190–198. |
[25] | U. R. Acharya, H. Fujita and S. L. Oh, et al., Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network, F. Gen. Comp. Sys., 79.3(2018), 952–959. |
[26] | U. Raghavendra, H. Fujita and S. V. Bhandary, et al., Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images, Info. Sci., 441(2018), 41–49. |
[27] | U. R. Acharya, H. Fujita and S. L. Oh, et al., Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals, App. Intel., 49(2019), 16–27. |