Loading [Contrib]/a11y/accessibility-menu.js

Global stability of a multi-group model with vaccination age, distributed delay and random perturbation

  • Received: 01 September 2014 Accepted: 29 June 2018 Published: 01 June 2015
  • MSC : 34E10, 37H10, 92D25, 93D20.

  • A multi-group epidemic model withdistributed delay and vaccination age has been formulated and studied.Mathematical analysis shows that the global dynamics of the model is determinedby the basic reproduction number $\mathcal{R}_0$:the disease-free equilibrium is globally asymptotically stable if $\mathcal{R}_0\leq1$,and the endemic equilibrium is globally asymptotically stable if $\mathcal{R}_0>1$.Lyapunov functionals are constructed by the non-negative matrix theory and a novel grouping techniqueto establish the global stability.The stochastic perturbation of the model is studied and it is provedthat the endemic equilibrium of the stochastic model is stochastically asymptotically stablein the large under certain conditions.

    Citation: Jinhu Xu, Yicang Zhou. Global stability of a multi-group model with vaccination age, distributed delay and random perturbation[J]. Mathematical Biosciences and Engineering, 2015, 12(5): 1083-1106. doi: 10.3934/mbe.2015.12.1083

    Related Papers:

    [1] Amira Bouhali, Walid Ben Aribi, Slimane Ben Miled, Amira Kebir . Impact of immunity loss on the optimal vaccination strategy for an age-structured epidemiological model. Mathematical Biosciences and Engineering, 2024, 21(6): 6372-6392. doi: 10.3934/mbe.2024278
    [2] Qiuyi Su, Jianhong Wu . Impact of variability of reproductive ageing and rate on childhood infectious disease prevention and control: insights from stage-structured population models. Mathematical Biosciences and Engineering, 2020, 17(6): 7671-7691. doi: 10.3934/mbe.2020390
    [3] Zhisheng Shuai, P. van den Driessche . Impact of heterogeneity on the dynamics of an SEIR epidemic model. Mathematical Biosciences and Engineering, 2012, 9(2): 393-411. doi: 10.3934/mbe.2012.9.393
    [4] Xinyu Bai, Shaojuan Ma . Stochastic dynamical behavior of COVID-19 model based on secondary vaccination. Mathematical Biosciences and Engineering, 2023, 20(2): 2980-2997. doi: 10.3934/mbe.2023141
    [5] Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067
    [6] Ying He, Junlong Tao, Bo Bi . Stationary distribution for a three-dimensional stochastic viral infection model with general distributed delay. Mathematical Biosciences and Engineering, 2023, 20(10): 18018-18029. doi: 10.3934/mbe.2023800
    [7] Tong Guo, Jing Han, Cancan Zhou, Jianping Zhou . Multi-leader-follower group consensus of stochastic time-delay multi-agent systems subject to Markov switching topology. Mathematical Biosciences and Engineering, 2022, 19(8): 7504-7520. doi: 10.3934/mbe.2022353
    [8] Pengyan Liu, Hong-Xu Li . Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7248-7273. doi: 10.3934/mbe.2020372
    [9] Jinliang Wang, Hongying Shu . Global analysis on a class of multi-group SEIR model with latency and relapse. Mathematical Biosciences and Engineering, 2016, 13(1): 209-225. doi: 10.3934/mbe.2016.13.209
    [10] Shuang-Hong Ma, Hai-Feng Huo . Global dynamics for a multi-group alcoholism model with public health education and alcoholism age. Mathematical Biosciences and Engineering, 2019, 16(3): 1683-1708. doi: 10.3934/mbe.2019080
  • A multi-group epidemic model withdistributed delay and vaccination age has been formulated and studied.Mathematical analysis shows that the global dynamics of the model is determinedby the basic reproduction number $\mathcal{R}_0$:the disease-free equilibrium is globally asymptotically stable if $\mathcal{R}_0\leq1$,and the endemic equilibrium is globally asymptotically stable if $\mathcal{R}_0>1$.Lyapunov functionals are constructed by the non-negative matrix theory and a novel grouping techniqueto establish the global stability.The stochastic perturbation of the model is studied and it is provedthat the endemic equilibrium of the stochastic model is stochastically asymptotically stablein the large under certain conditions.


    [1] Rocky Mount. J. Math., 9 (1979), 31-42.
    [2] J. Math. Biol., 33 (1995), 250-260.
    [3] Nonlinear Anal.: Real World Appl., 13 (2012), 1581-1592.
    [4] Math. Biosci., 28 (1976), 221-236.
    [5] Nonlinear Anal.: Real World Appl., 12 (2011), 1991-1997.
    [6] Appl. Math. Comput., 218 (2011), 280-286.
    [7] Appl. Math. Comput., 218 (2011), 4391-4400.
    [8] Nonlinear Anal.: Real World Appl., 14 (2013), 1135-1143.
    [9] Canad. Appl. Math. Quart., 14 (2006), 259-284.
    [10] Proc. Amer. Math. Soc., 136 (2008), 2793-2802.
    [11] J. Differential Equations, 248 (2010), 1-20.
    [12] Math. Biosci. Eng., 9 (2012), 393-411.
    [13] Nonlinear Anal.: Real World Appl., 12 (2011), 2163-2173.
    [14] Science, 265 (1994), 1451-1454.
    [15] Nonlinear Anal.: Real World Appl., 11 (2010), 4154-4163.
    [16] Appl. Math. Comput., 214 (2009), 381-390.
    [17] Appl. Math. Model., 36 (2012), 908-923.
    [18] Math. Biosci., 195 (2005), 23-46.
    [19] Appl. Math. Model., 34 (2010), 437-450.
    [20] Appl. Math. Comput., 226 (2014), 528-540.
    [21] J. Franklin Inst., 297 (1974), 325-333.
    [22] Philadelphia: Society for industrial and applied mathematics, 1975.
    [23] W. A. Benjamin, New York, 1971.
    [24] Funkcial. Ekvac., 31 (1988), 331-347.
    [25] Springer-Verlag, New York, 1993.
    [26] J. Math. Biol., 28 (1990), 365-382.
    [27] J. Differential Equations, 48 (1983), 95-122.
    [28] J. Integral Equations, 10 (1985), 123-136.
    [29] Ph.D. thesis, University of Nottingham, 2008.
    [30] Science, 197 (1977), 463-465.
    [31] Stoch Process Appl., 97 (2002), 95-110.
    [32] J Math Anal Appl., 341 (2008), 1084-1101.
    [33] Phys A: Stat Mech Appl., 390 (2011), 1747-1762.
    [34] Appl. Math. Comput., 238 (2014), 300-318.
    [35] Commun Nonlinear Sci Numer Simulat., 19 (2014), 3444-3453.
    [36] Math. Biosci. Eng., 11 (2014), 1003-1025.
    [37] Chichester: Horwood publishing, 1997.
    [38] SIAM Rev., 43 (2001), 525-546.
  • This article has been cited by:

    1. Jinhu Xu, Yan Geng, A nonstandard finite difference scheme for a multi-group epidemic model with time delay, 2017, 2017, 1687-1847, 10.1186/s13662-017-1415-8
    2. Zhijun Liu, Jing Hu, Lianwen Wang, Modelling and analysis of global resurgence of mumps: A multi-group epidemic model with asymptomatic infection, general vaccinated and exposed distributions, 2017, 37, 14681218, 137, 10.1016/j.nonrwa.2017.02.009
    3. Xue Ran, Lin Hu, Lin-Fei Nie, Zhidong Teng, Effects of stochastic perturbation and vaccinated age on a vector-borne epidemic model with saturation incidence rate, 2021, 394, 00963003, 125798, 10.1016/j.amc.2020.125798
    4. Yan Geng, Jinhu Xu, Stability preserving NSFD scheme for a multi-group SVIR epidemic model, 2017, 01704214, 10.1002/mma.4357
    5. Yan Liu, Pinrui Yu, Dianhui Chu, Huan Su, Stationary distribution of stochastic multi-group models with dispersal and telegraph noise, 2019, 33, 1751570X, 93, 10.1016/j.nahs.2019.01.007
    6. Xinyou Meng, Qingling Zhang, Complex Dynamics in a Singular Delayed Bioeconomic Model with and without Stochastic Fluctuation, 2015, 2015, 1026-0226, 1, 10.1155/2015/302494
    7. Suxia Zhang, Hongbin Guo, Global analysis of age-structured multi-stage epidemic models for infectious diseases, 2018, 337, 00963003, 214, 10.1016/j.amc.2018.05.020
    8. Junyuan Yang, Yuming Chen, Theoretical and numerical results for an age-structured SIVS model with a general nonlinear incidence rate, 2018, 12, 1751-3758, 789, 10.1080/17513758.2018.1528393
    9. Ying Guo, Wei Zhao, Xiaohua Ding, Input-to-state stability for stochastic multi-group models with multi-dispersal and time-varying delay, 2019, 343, 00963003, 114, 10.1016/j.amc.2018.07.058
    10. Lan Meng, Wei Zhu, Analysis of SEIR epidemic patch model with nonlinear incidence rate, vaccination and quarantine strategies, 2022, 200, 03784754, 489, 10.1016/j.matcom.2022.04.027
    11. Zhen Cao, Lin-Fei Nie, DYNAMICS OF A STOCHASTIC VECTOR-HOST EPIDEMIC MODEL WITH AGE-DEPENDENT OF VACCINATION AND DISEASE RELAPSE, 2023, 13, 2156-907X, 1274, 10.11948/20220099
    12. Han Ma, Yanyan Du, Zong Wang, Qimin Zhang, Positivity and Boundedness Preserving Numerical Scheme for a Stochastic Multigroup Susceptible-Infected-Recovering Epidemic Model with Age Structure, 2024, 1557-8666, 10.1089/cmb.2023.0443
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2307) PDF downloads(531) Cited by(12)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog