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ABSTRACT. A multi-group epidemic model with distributed delay and vaccina-
tion age has been formulated and studied. Mathematical analysis shows that
the global dynamics of the model is determined by the basic reproduction num-
ber Ro: the disease-free equilibrium is globally asymptotically stable if Rg < 1,
and the endemic equilibrium is globally asymptotically stable if Rg > 1. Lya-
punov functionals are constructed by the non-negative matrix theory and a
novel grouping technique to establish the global stability. The stochastic per-
turbation of the model is studied and it is proved that the endemic equilibrium
of the stochastic model is stochastically asymptotically stable in the large under
certain conditions.

1. Introduction. An epidemic model was proposed by Cooke [1] to describe the
disease spread via a vector (such as a mosquito). It is assumed that when a sus-
ceptible vector is infected by a person, there is a time delay, 7 > 0, during which
the infectious agents develop in the vector, and the infected vector becomes itself
infectious after the delay. It is also assumed that the vector population size is large
enough such that at any time ¢ the infectious vector population is simply propor-
tional to the infectious human population at time ¢t — 7. Let S(¢) and I(¢) denote
the numbers of the human susceptible and infective individuals, respectively. The
force of infection at time ¢ is assumed to be given by 8S(¢)I(t — 7). Beretta and
Takeuchi [2] studied the model with distributed delay,

S'(t) = p— pS(t) — BSE) [ f(r)I(t — 7)dr,
I'(t) = BS(t) 7> F(r)I(t — T)dr — (1 + NI (2), (1)
R'(t) = X — pR,
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where (3 is the contact rate; u is the birth and death rate; A is the recovery/removal
rate. f(7) represents the proportion of the infectious vector population, and func-
tion f(7) is assumed to be non-negative, square integrable on R, = [0, 4+o00) with
fo+oo f(r)dr =1 and f0+oo 7f(7)dT < +00.

One essential assumption in classical compartmental epidemic models is that the
individuals are homogeneously mixed, and each individual has the same chance to
get infected. More realistic models divide the host population into groups to con-
sider the disease transmission in heterogeneous cases. The groups can be classified
according to education levels, ethnic backgrounds, gender, age, professions, commu-
nities, or geographic distributions for their diversities in disease transmission. The
vital epidemic parameters vary among different groups. Based on these factors,
Shu et al. [3] investigated the following general multi-group model with distributed
delay:

Sp.(t) = ni(Sk) = Y25y Brihw(Sk) =g fi(1)g;(1i(t = 7))dr,
B (t) = 327 Brihi(Sk) [72g £5(1)g;(1i(t — 7))dr — (d® + 6k) Ex,, (2)

I(t) = 6kEx — (df + v + €x) L. k=1,2,-++ ,n.

The global stability of the unique endemic equilibrium of model (2) was proved
by using a graph-theoretical approach and Lyapunov functionals. Global stability
results were also obtained for other multi-group epidemic models [4, 5, 6, 7, 8, 9,
10, 11, 12].

Vaccination is one of the commonly used control measures to prevent and re-
duce the transmission of infectious diseases. The eradication of smallpox has been
considered as the most spectacular success of vaccination. Some vaccines can offer
lifelong immunity with one dose, while others require boosters to maintain immu-
nity since the acquired immunity may wane with time. It is natural to consider
the vaccination and the waning immunity in modeling disease dynamics. Li et al.
[13] has investigated the global dynamics of an epidemic model with vaccination
for newborns and susceptibles. Blower and McLean [14] have argued that a mass
vaccination campaign may increase the severity of disease, if the vaccination is ap-
plied to only 50% of the population and the vaccine efficacy is 60%. Xiao et al. [15]
assumed that the vaccinated individuals can be infected at a reduced rate compared
to the susceptibles. Other mathematical models on vaccination have been studied
in [5, 16, 17].

Although waning immunity has been included in several models [5, 13, 15], it was
assumed that the rate of the immunity loss is a constant. A better assumption on
the waning immunity is that the protection immunity depends on the vaccination
age of an individual (the time from the vaccination). The epidemiological models
with vaccination age structure can be a suitable choice to describe the dynamics of
an infectious diseases with waning immunity after vaccination.

The mathematical models with the chronological age, disease age, and vaccina-
tion age have been widely used to describe the impact of the age on the disease
evolution [18, 19, 20, 21, 22]. Iannelli et al. [18] have studied an epidemic model
with vaccination age by assuming the immunity decreases with the time after vac-
cination. Li et al. [19] have proposed an epidemic model with vaccination age and
treatment to show that backward bifurcation occurs due to a piecewise treatment
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function. Duan et al. [20] have simplified the model [19] by assuming no treat-
ment and have obtained the global stabilities of the disease-free equilibrium and
the endemic equilibrium.

Motivated by [2, 3, 20], we formulate and study the following multi-group epi-
demic models.

Si(t) = Ap — (4 +§k)5k — 0y BriSk fy fi(r)gi(Li(t — 7))dr
—|—f0 ap(0)vk(6,1)do,

(35 + &) ve(6,1) = —(d) + ax(6))vr(6, 1),
vk (0,1) = ExSk(t), vk(6,0) = vor(#) € L} (0, +00), (3)
Ep(t) = 327 BriSk [ =g Fi(T)g; (L;(t = 7))dT — (dff + ) Ex,

I,(t) = 6k Bx — (df, + v + €)1k,

R (t) = vl — dff Ry..

Here Sk, Eg, Iy, and Ry (kK = 1,2,---,n) denote the numbers of susceptible,
latent, infectious, and recovered individuals at time ¢ in the k-th group, respec-
tively. Function vg(0,t) is the age density of vaccinated individuals at time ¢ in
the k-th group. The kernel function f;(7) satisfies the conditions f;(7) > 0 and
fT o fi(T)dT = a; > 0. The non-negative constant f; is the transmission rate due
to the contact of susceptible individuals in the k-th group with infectious individuals
in the j-th group. The new infection occurred in the k-th group with distributed de-
lays and the nonlinear transmission is given by Zn L Bri Sk fo - fi(T)gi (L (t—7))dr,
where g¢;(I;) denotes the force of the infection. The vaccinated compartment is
structured by the vaccination age 6, and it is assumed that the newly vaccinated
individuals enter the vaccinated class vg(6,t) with vaccination age zero. Function
ay(6) is the immunity wane rate, and it is a nonnegative, bounded and continuous
function of #. For two given vaccination ages 61,62, (0 < 67 < 03 < 4+00), the num-
ber of the vaccinated individuals with the vaccination age 6 between 6; and 5 at
time ¢ is [, 0012 vg(0,t)df. The immunity lose rate (the number of individuals moving
from the vaccinated class into the susceptible class due to the waning immunity) at
time ¢ is [,7° ay,(8)vi (9, t)d6.

Parameters df, dkv, dkE, dé, dkR are the natural death rates of Sy, v, Ex, I, and Ry,
respectively. Ay, &k, Ok, vk, and €, are the recruitment rate of the susceptible class,
the rate of vaccination of the susceptible individuals, the rate at which exposed
individuals become infectious, the recovery rate of infectious individuals, and the
disease induced mortality in the k-th group, respectively. We also assume that the
function gy (1) is sufficiently smooth and satisfies following properties [3]

9:(0) =0, gr(Ix) >0, for I} >0,
there exists by, 0 < by < 400, such that @)
Qk( I) _ = by, SUpr, <0 gk( k) =b,, k=1,2,--- ,n,

limy, o+

where gi(I;) describes the infectivity of the individuals in I compartment, and
it is natural to assume that ¢z(0) = 0, gx(Ix) > 0 for I > 0 due to the fact
that the disease can not spread if there is no infection. Note that %}f’“) is the per
capita infectivity of the infected individuals in compartment I;. The assumption

Supy, <o gk}(}fk) = by says that the per capita infectivity is bounded. The limit
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limy, o+ %}f"’) = by indicates that the per capital infectivity is the largest at the
beginning of the disease outbreak.

There exist functions g;(I;) satisfying assumptions given in (4). Four examples
are listed here:

I; I;

1'7 9 mj
! Aj+ 1 L+a;1;~

(0<m; <1), 1—e %5, (a; >0). (5)

Preliminary results on the dynamics of model (3) are presented in Section 2. The
global stability of the equilibrium of model (3) is proved by Lyapunov functional
and graph theory in Section 3. The stochastic version of the model is derived and
its asymptotic behavior is studied in Section 4. A brief summary is given in the
concluding section.

2. Preliminaries. Let Ny (t) = Si(t) + Vi(t) + Ex(t) + 11 (t) + Ri(t) with Ny (0) =
Nor be the total population size at time ¢ in the k-th group, where Vi(t) =

fo+oo vg(6,t)df. From equations in (3), we know that N (¢) satisfies the differential

equation
N;/C(t) = Ay — dek(t) — dXVk(t) — dkEE;C(t) — dilk(t) — dkRRk(t) — 0 Ik (2).
The comparison principle implies

A A
Ny (t) < Noge "t 4 25 (1 —emmt) - Ny (1) < =2,
Mk Mk

A
where yj, = min{dy,d} ,d¥, dl, d}, and Noy < k.

k
Integrating the second equation in (3) along the characteristic line t—6 = constant
yields

EuSk(t — 0)Lok(0), t>4,
v (0,t) = (6)
UOk(e_t)Im’ 0>t

where I'oi(0) = e~ Jo (i ek () ds | Substituting (6) into the first equation of (3)
gives

Si(t) =My — d Sk — Zﬂkjsk /OOO fi(m)g; (Lt — 7))dr — & Sk
, )
+/ Sk(t—Q)Fk(G)d9+Fk(t)7
0

where

Te(6) = Epon(O)Ton(0), Fi(t) = [ PG, Jimy e Fi(t) = 0,

Te = [, Tr(0)d0 = & (1 — dYTox) , Tox = [, Tox(0)d6, Ty, = [; Ti(6)do.

After replacing the first equation in (3) by (7) and dropping the equation for
Ry (t), we have the limiting model (8). The qualitative behavior of the limiting
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model is equivalent to that of model (3) [23].
Skt = = (dF + €Sk = - BusSi | Fi(ngs (Tt = )ar
j=1 0

+ /0 T D0kt — 6)de,

E,g(t) = Zﬁkjsk /OOO fj(T)gj(Ij(t —7))dT — (df + 0y) Ek,

Jj=1

I,/C(t) =0, E) — (di + vk + Ek)Ik.

We assume that [ f;(7)ed7dr < oo, where ); is a positive number. Define
the following Banach space of fading memory type [24]:
Cx :{QS € C((—00,0],R) : p(s)e* * is uniformly continous for

5 € (—00,0], and sup |p(s)[e***

< oo},
s<0

with norm [|¢[|x = sup,<q |¢(s)|e***, and let ¢, € Ci be such that ¢y(s) = ¢(t +
s), 8 € (—00,0]. Consider system (8) in the phase space

X = H(Ck X Ck X Ck)
k=1

By the fundamental theory of functional differential equations [25], model (8)
has a unique solution satisfying the initial conditions

Sk(s) = ¢1x(s), Ex(s) = ¢ar(s), Ik(s) = d3r(s),
(;Sik(s) >0,s € (—O0,0], d)zk(O) >0,:=1,2,3, k=1,2,--- ,n,
where (¢11(5), ¢21(5), ¢31(5), -+ , P10 (5), P2n(s), P3n(s)) € X.

From above analysis, we know that

(9)

A
Q={(S1, B, I, , S, Bus 1) € X | S+ By + I < o

Sk:7Ek>]k 207 k:172a ,’I’L}

is the positive invariant set of model (8). The global stability of model (8) will be
discussed for the solutions with the initial values in 2. Once the solution of model
(8) is determined, we can obtain vi(6,t) from (6). The stability of the equilibrium
of model (3) is the same as that of model (8). We will focus on the dynamical
analysis of the reduced model (8).

Model (8) always has a disease-free equilibrium Py = (S9,0,0,---,59,0,0) where
S) = W The endemic equilibrium P, = (S§, Ef, If,---,S%, EX I*) of
model (8) is determined by following system of equations

Ap = (df + &) S+ 20, By Siajgi(I7) — [o T1(6)S;db,
> i=1 BriSkajgi(I3) = (dff + o) Ef, (10)
OLE; = (di + Y+ Ek-)I;S.
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The basic reproduction number is defined to as the spectrum radius of matrix
Fo, i.e.,

OrBrjSpajb;
Ro = o(F, here Fy = '
o = p(Fp), where Fp ((dkE + 0)(df + i+ €ex) ) <, j<n

It is the expected number of infected individuals produced by a typical infected

individual during its entire infectious period [26].

3. Stability analysis of equilibria. Ry may serve as the threshold to describe
disease spread. Usually, the disease will extinct in the host population if Ry < 1,
and the disease will become endemic if Rg > 1.

Theorem 3.1. Assume that (4) holds, and B = (Bj)nxn 15 trreducible. If Ry <1,
then the disease-free equilibrium Py of model (8) is globally asymptotically stable.

Proof. The irreducibility of B implies that matrix Fj is also irreducible. Fj has

a positive left eigenvector w = (wy,- - ,wy) corresponding to the spectral radius
p(Fo) = Ro. Let I = (I,--- 1), S* = (S7,---,8p), e = (df+5k;‘zzzli¥%+ek) >0,
and define
Sk (dkE + 0k)
U, = kzlck{sk—sk Skln SO +Ek+TIk

+/Ooork(9)/09 <Sk(t—s)—52—521 S’“(Sk))dde

n oo ¢
+Zﬂkj52/0 fj(T)/t, g;(L;(s ))deT}

From the equation Ay = (ds + &) Sk fo (0 Skdﬁ we get the derivative of U
along the solution of (8)

W [ eSS o TaSUSE— S
ch{ S: —|—F/€(Sk Sk) + S,

k=1

+/ rp(@)50 (14w 2= SE=6)]
0 Sk A

+o0 B 7 .
+ ZBMS,S/O £i(7)g; (L;(t))dr — (dy; +5k)(cé;;+% + k)Ik}

- { (df + &dl Tor) (S — 59)2
Cey — Sk

= . Se(t—0)\  Sk(t—0)

/O T,(6)S? <1+1n< 5 ) — )d@}
(= wnOkBiSRaigi(ly)

> ( 2 E + 00+ e+ )Ty “”“”“)

i wk(SkﬁkJ ]ga]b
1 — wi
(J (@7 + o) (A + e+ en) t M

+
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=(wi, - wn) (FoI" = IT)

=(p(Fy) — 1) (w1, --- ,wp)IT <0, if Ry < 1.
It is clear Uy = 0 if and only if I =0 or Rg = 1 and Sy, = S,g. It can be verified that
the largest compact invariant set in Q@ = {(S1, E1, I1(.), -+ , Sn, En, I.(.)) | U =0}
is the singleton {Py}. By the LaSalle invariance principle for delay systems [25, 27,

28], we obtain that the equilibrium Py of system (8) is globally asymptotically
stable. This completes the proof of Theorem 3.2. O

Next, we can prove that the endemic equilibrium P, is globally asymptotically
stable when it exists. The method is based on the graph approach and Lyapunov
functionals [9, 10, 11].

Theorem 3.2. Assume that B = (Bk;)nxn s wrreducible. If Rg > 1, and

gi(l) I; <1 9 17)

9;(I;) If 9;(1;)
then the endemic equilibrium P, of (8) is globally asymptotically stable when it
exists.

)go, forl; >0, j=1,2,--- ,n, (11)

Proof. For convenience of notations, define

and B B B
SipPu Ba —Br
E _ _6.12 ZZ&Q ﬂ?l : _/8.77,2
_Bln _BZn T Z?;én Bnl

B is also irreducible. By Lemma 2.1 in [9], the solution space of the linear system
Bv = 0 has dimension 1 with a base

(vla"' 7Un) = (Clla" : 7Cnn);

where ¢y > 0 is the co-factor of the k-th diagonal entry of B. We construct the
Lyapunov functional

= Skt
U, :ka Sk(t) = S; —SiIn k(*) + Ex(t) — Ef
k=1 Sk

Ei(t df + ¢ 1
Ly Or

oo [4 _
+/ Fk(é))/ <Sk(t7‘)SZ — Sn S’C(;T)) drdf
0 0

k

n “+o0o t
3 8si [ e [ <gj<fj<s>>—gj<1;>

— g1y L) ) deT}.

9;(I})
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Computing the derivative of Uy along the solution of model (8), we obtain

dU2 - v Sk _ Sa > B
Z k{ (1 ) <Ak dy Sk gksk+/0 T (60)Sk(t — 0)do
- Zﬁkjsk(t)/o fj(T)gj(Ij(t—T))dT>
( Ek) (]Zlﬂkgsk / fj g] t_ T))d

dP +§ Iy
—(dF + 5k)Ek> + (dy + %) ( — ’“) <6kEk — (df + 4, + ek)Ik)

Ok Iy,

Skt —0)

I do

+ I'kSk —/ Fk(e)Sk(t—e)d9+/ Fk((g)S; In
0 0

- Zﬁm‘si /O00 fi(7) [gj(fj(t)) —g;(L;(t— 7))

(I 1In M g
+g](Ij)l ( g;(1;(1)) >‘|d }

Using the equilibrium equations (10), we have

) ivk{ _ R+ 6)(S] = Sk)* + Tw(Sk — S)

S
k=1 k

S Si
Skt —0 Sk
_ k(tsk)> do + (1 - ) Zﬁkﬂsk“ﬂgf( i)

+ (d¥ + o) Ef — Zﬁkjsk/ £i(T)g; (I;(t — 7))dr

T * * [e’e) _
o DeBR(%E = 8) / 4 (60)S5 (1 TN iUl
k 0

1
—(dE—i—(Sk)Ek%— (d +5k)(d +’Yk+6]€)

I
k Ok :

dP +6p)(d +k + €)1 o .
i k)(ék ‘ ’“>Ik+2ﬂkjskajgj<fj<t>>

j=1
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I EpI
+szk5m5k% / fi(r ( —i_TZ_E*Ik:

k=1j=1

Lo eIt =) SiEig (It - T>>> i

g;(I}) 9;(I7) SiErg; (1)
. (d + &kdY Tox)(S; — Sk)?
=D uk{ -
k=1 Sk

[}

+/oork <1+1n5 (gl:e)—sk(g;a))de}

n n

S S
S T (-
k=1 j=1
i (1w SeERe T —T))  SkEigiT;(t — 7))
Sy Ergi(I7) SiErg;(I7)
W Bl B
+(1 E*Ik EI’Q)]CZT
- . gi (L) g;(I)) Ik)
+ D vk ) Brj ( -+ L=
; ; JINIE g T T
_ivk (df + &dY Tor)(S; — k)
=1 Sk

e Sk(t—e) Sk(t—e)
[rms s _sio),)

n Sk
| 41n 2k _ Ok
(* S S*>

“I‘ZUkZBkJSkgj / fj

k=1 j=1

b (1410 SeBEOUE =) SeBro; (Tt — 7))
SiErg;(I3) Sy Exg;(I5)
EyI;  Epl}
1+41In2kk _ Zhk
+< * Ei T, E;Ikﬂ‘h
- ~ - 9;(L;) I ( 93(@))
+ Vk Bk " .
; ; J[<9j(fj) I 9;(15)
v L Ly DR g
17 Iy g9; (L)1, 9;(1;)I

1091



1092 JINHU XU AND YICANG ZHOU

# Y ud Sin@) [ | (1+mg -3

k=1 j=1
o1 B U= ) S.Bio, (1, =)
SkEkgj(Ij) SkEkgj(Ij)
BEuli B}
1+1In
+( + B, Eglk>1d7

~ gz (9@ L _ 9ildj)
PR (gja;) f*>(1 i)

k=1 1 J
- s 9; (I )1; g](‘[j*)‘[]
+ Vg B 1+ 1In - "
; ; ! < g ()15 g;(I;)I;
+) . Brj <I*_I;:> —Zkaﬁkjln 7
k=1 j=1 J k=1j=1
n o n B I Ik n o n *
<33 i (- ) - S
k=1j=1 K k=1j=1
=:H, — H,

The inequality in % is obtained by using conditions (11) and following two in-
equalities
Sk | Sk X
S* + S, > 2, with the equality holding if and only if S, = S};
1 + Inz — 2 <0, for all z > 0 with the equality holding if and only if = = 1.
We first show that H; =0 for all I, I5,--- ,I, > 0. It follows from the equality

Bv = 0 that > oim BirSiangr(If)v; = 320, Bk, Sra;gi(I7)vk, which implies

- * * I; Ik * *
Z Z Ok Bk Ska; g5 (1 )I%* = Z T Z BikSivjargr(Iy)

k=1j=1 J k=1 "k j*l
Iy,
= Z F Zﬂkiskvkazgz Z kaﬂkjska]gj I*)I*v
k=1 "k i=1 k=1j=1

and thus ¢ >0 vk B (f—ﬂ — f—’;) = 0. Next we show that

szkﬁkj

k=1 j=1

—O for all Iy, I>,--- , I, > 0.

Let G denote the directed graph associated with matrix (Bkj), which has vertices
{1,2,--- ,n} with a directed arc (k,j) from k to j if and only if Bkj # 0. E(G)
denotes the set of all directed arcs of G. Using Kirchhoff’s Matrix-tree Theorem
(see Lemma 2.1 [9]), we know that vy = cgx can be interpreted as a sum of weights
of all directed spanning subtrees T of G that are rooted at vertex k. Consequently,
each term in kakj is the weight w(Q) of a unicyclic subgraph @ of G, obtained
from such a tree T' by adding a directed arc (k,j) from vertex k to vertex j. Note
that the arc (k, j) is part of the unique cycle CQ of @, and that the same unicyclic
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graph @ can be formed when each arc of C'Q is added to a corresponding rooted
tree T'. It is not difficult to see that the double sum in Hs can be interpreted as a
sum over all the arcs in the cycles of all the unicyclic subgraphs @ containing of G.
Therefore, Ho can be rewritten as

Hy =Y Hpq,
Q

where

_ Lily _ Ly
(k,j)€E(CQ) J

(kJ)EE(CQ) 7
Since F(CQ) is the set of arcs of a cycle CQ, we have

LI} LI}
H Ik — 1, and thus In H Lk =,
, Tk , I3 1
(kj)EE(CQ) Y (kj)EE(CQ) Y
This implies that H,, g = 0 for each @, and Hy =0 for all I, 15, -, I, > 0. From
assumption (11) we have Uj < 0. It can be verified that the largest compact in-

d
variant subset of set {(Sl, Ei, (), ,Sn, En, 1)) v _ O} is the singleton

da
{P.}. By the LaSalle invariance principle and an argument similar to that in the
proof of Theorem 3.2 we know that the equilibrium P, of model (8) is globally

asymptotically stable. O

Remark 1. (i) It is easy to see that the functions listed in (5) satisfy condition
(11). But the following three functions may be excluded by condition (11)

1 I
1+Oéjlj2’ 1+Oéjlj +lej2
(ii) Condition (11) holds if g;(0) = 0, g}(I;) > 0, and g (I;) <0 (I; > 0).

Ije ERE

4. Stochastic model. The nature of epidemic growth and spread is inherently
random due to the unpredictability of person-to-person contacts [29], and the pop-
ulation is subject to a continuous spectrum of disturbances [30]. The determin-
istic approach has some limitations in modelling the transmission of an infec-
tious disease due to environmental noises. Stochastic differential equation (SDE)
models have been applied to different infectious diseases in many circumstances
[31, 32, 33, 34, 35, 36]. Motivated by [3], we take the randomly fluctuating environ-
ment into consideration by stochastic perturbations of white noise type. We study
the following stochastic model,

Si(t) =Ag — di Sy — Z Bk:jsk/ (Tt —7)dr
j=1 7=0
+ 01x(Sk — Si)Biy,
E(t) = Z Br; Sk fi(T)Li(t — 7)dT — (dF + 61.) By,
=1 =0

+ o9k (Ex — E};) By,
I,(t) =6kEy, — (df, + v + €)1 + o3, (I — 1) Bhy,
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where By (t), Bar(t) and Bsp(t) (k= 1,2,---,n) are independent standard Brow-
nian motions defined on a complete probability space (2, F,{F:}i>0,P) with a
filtration {F;}i>o satisfying the usual conditions (i.e., it is increasing and right
continuous while Fy contains all P-Null set). And o3 > 0 (i = 1,2,3) repre-
sent the intensities of By, (i = 1,2,3), respectively. If there are no noises, i.e.
o =0 (i =1,2,3), then model (12) is

Si(t) = A — di S — 325 BrySu [ = fi(T)I;(t — 7)dr,

Ei(t) = 3271 BriSe Jr=o fi(T) L (t = T)dT — (df} + 61) B, (13)

Illg(t) = 5kEk — (dé + v+ Ek)Ik.

The basic reproduction number of model (13) is

6k,6’k52a
R1 = p(My), where My = ( Ik ,
(d + 0i)(df + v + k) ) 1<p jn
and S = % (k = 1,2,--- ,n). The similar arguments in [3] can lead to the

following resuklt.

Theorem 4.1. If Ry < 1, then the disease-free equilibrium of model (13) is globally
asymptotically stable. If Ry > 1, then model (13) has an endemic equilibrium Pk,
which is globally asymptotically stable.

P, is also an equilibrium of the stochastic model (12). We will focus on the
stability of the equilibrium P, by using Lyapunov functionals. We firstly give some
definitions and auxiliary statements.

Consider the n-dimensional stochastic functional differential equation

dX(t) = F(X, t)dt + G(X,, t)dB(t), Xy = ¢(s) € BC((—o0,0], R"), (14)

where X; = X (t+s),s < 0, BC((—o0,0], R") is the space of bounded and continuous
functions from (—oo, 0] to R™ with the norm ||¢|| = sup,<, |¢(s)|. Suppose that the
existence and uniqueness theorem holds, and (14) has a zero solution.

Let C*!'(R" x Ry ; Ry) be the family of all nonnegative functions V (X, ¢) defined
on R™ x Ry such that they are continuously differentiable twice in X and once in
t. For a function V € C?1(R" x Ry ; R, ), define the operator L by

1
LV (X,t) = Vi(X,t) + Va (X, ) F(X,t) + §tmce[GT(X,t) Vxx - G(X,t)], (15)
where T means the transposition.

Definition 4.2. [37] (1) The trivial solution of (14) is said to be stochastically
stable or stable in probability if for every pair of € € (0,1) and r > 0, there exists
6 > 0 such that

P{|X(t; )| <7, YVt >0} >1—¢ holds for all ||¢| < 4. (16)

(2) The trivial solution is said to be stochastically asymptotically stable if it is
stochastically stable, and for every € € (0, 1), there exists § > 0 such that

P~{tli>r1t01C |X(t; )] =0,V t>0}>1—¢ holds for all || < . (17)

If Ry > 1, then the stochastic system (12) can be centered at its endemic equi-
librium P, (ST, EY, If,---, Sy, EY, I*). The change of variables

n) n

=Sy — Sk, yk =Er — Ef, 2 =1, — I},
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leads to

wh(t) = — diwe — Y Brja; e — Y Br;Si /O £i()z;(t — T)dr
j=1 j=1

- Zﬂijk / 1i(T)zj(t = 7)dT + 01828 BYy,,
j=1 0

n n el 18
) =3 Bugastio+ 3008t [ £t - riar (18)
j=1 j=1

+ Zﬂkﬂ?k/ Fi()z(t = 7)dr = (dff + 5k)yr + o2ryr Bo,
0

i=1
24 (t) =0kyr — (dh + Yk + €x) 2k + 03126 By

It is easy to see that the stability of P, of (12) is equivalent to the stability of
zero solution of system (18).

Theorem 4.3. Assume that B = (B;)nxn is trreducible and R1 > 1. If
(=1 BrySid;ag) (32— Bri ;)
AE; 4377 Bri (S + Ef)a, Iy’
o2 < 5kE;:2(Z?:1 Brjl;a;) |
I (de; + 2702 Bri(Sk + EZ)ajIJ*.‘)

then the endemic equilibrium P, of (12) is stochastically asymptotically stable.

O'%k. <2df, ng <

(19)

Proof. From the stability theory of stochastic functional differential equations, it is
sufficient to find a Lyapunov functional V' (X) such that LV (X) < 0 for sufficiently
small § > 0 and the identity holds if and only if X = 0 (see [37]). The endemic

equilibrium P, satisfies following equations
Ay = dg Sy + 327 BriSraI7,
>ie1 BriSia; Iy = (di + 0k B}, (20)
Sk By = (dL 4+ v+ en) I}
We define .
Vi) = 5 3

where my, (k=1,2,--- ,n) are constants to be determined. It6’s formula leads to

LV = kayk [Zﬁkjajlka + Zﬁkjsz / Fi()z(t — 7)dr
k=1 j=1 j=1 0

—(df + 0k)yk + Y Brj / £i(T)z(t — 7)dr
i=1 0

1 n
5 Ykt

n
=2 m
k=1

Z Brja;Ij wreyr + Z Brj Sk / 1i(m)z(t — 7)dr
J=1 j=1 0

n ) 1
+ Zﬁkjwkyk/ i (r)z;(t = 7)dr — (di} + Ok )y + 2"%1&11%]
0

j=1
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=1

. 1
( Brj E]i I] 2U%k> yi]

+> kZﬁkymkyk/ fi(T)z;(t = T)dr

k=1
. « Yk z{t—7),
EkZﬁkg‘SkIJ B} fg I dr
j=1 J

-
k=1

k=1

+ Zmic Zﬁijkyk /OO [i(T)zi(t — 7)dr
k=1 j=1 0
2
ka 7Ek25kjsk1*/ [T ( t;T)> dr
J

n n 2
* * * Tk 1 *2 2 Yk
+;/Bk]ajlj TeYk — <Ek Zﬁk]‘s’klj aj — §Ek: 02]6) (E;)

| N

lzﬁkﬂy TRYk + ZﬂkjszykA [i(m)z(t — 7)dr
1 =

j=1

+> Mk Y BriTru /OO £ (T)z(t — 7)dr
k=1  j=1 0

Define

1
Va(X) an z3 4+ y2) and Va(X) = = Zlkzk

[\

Similarly, from Ito’s formula, we obtain

n
LV, = an(l‘k + Yk)

— dgy — (di} + M@m]

1 n
+5 > (ofhak + o)

Il
S
B

1
- (dkE + &k — 2U§k) i — (dp +dff + 5k’)xkyk‘|

n
= nk
k=1

1 .1
_<dg glk) Zﬁk]E’kaj - 1ok

- Si s
_ df+ZBkjE7kZIjaj xkykl
j=1

n n 2
* 1 * * Tk 1 * Yk
+ Brjai L ey — 55k > BiiSilia; — §Ek2‘7§k (E*)
j=1 k

i
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n
1
E S 2 2
= % [— <dk — §Ulk‘ Ty
k=1

* S * T 1 * Yk ?
k

=1

n S*
S k 1%
— | d; +;5kjfzfjaj xkyk], (22)
and

1 n
2k + 5 Zlkogkz,z
k=1
" oEr 1 Yk 2k
=> x| — < k gk) 2+ BT
2 =T e B I;

n B 2 2
| Zk

From (21), (22) and (23) we have

LVs = Zlk Skyk — (df, + i + €) 2

(23)

n 1
LVy + LV, + LVs g;{ — ny, (df — Qafk> i

1 1 .
— [ka Ek;Bk]SkI CLJ Ek} O.Qk — §lk(5kEka
1 e\
+ §n;€ 2Ek ;Bk]SkI a] Ek} 02k (E;)
1 2\’
— | GOk ELLL — lig 1*2 2 ) (= (24)
2 I

ey By [ 1(r)z(e - r)dr
j=1 0

n n
. .
mkzﬂkiljaj - Mk d£+2ﬂkjfifjaj TrYk
Jj=1 j=1 k

2
1 - > zij(t—T1
+§mkE,jZBkjS,jIj/ fi(7) (ﬂ(1)> dT}.
j=1 0 J

Finally, we define

2
1 - * < * Tk * ! ZJ(S)
Vi = QI;mkEk;ﬂkjSklj/o fi(7) /t_T ( I dsdr, (25)

J
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which gives

2
1 . * - * T Zj
LV4 :5 kaEk Zﬁk]SkI] a; (I})

k=1 j=1
1 n n fe') (t ) 2
* * T Zi\t =T
- §kaEk25kj5kIj/o fi(7) (J IT > dr.
k=1 j=1

c
Let my = ELf’ where cg has the similar definition as that given in Section 3. Then

we have ¢y, = mipE}, and

DN | =

n n 2 n n 2
* * Tk Zj 1 * * Tk 2k
Zm’“Ek Zﬁ’“js’ﬂlj 4 (Ii> T2 kaEk Zﬂkjskjj a; <[*) ;
k=1 J k=1 j=1 k

=1
which gives

n n 2
LV4 :5 ;mkEk Zﬁk‘jsklj a; (I;:)

j=1
1 n 0o (t ) 2
* * T i\t — T
- §kaEkzﬂkjSklj/U fi(7) (JI*> dr.
k=1 j=1 j

Let V=V, + Vo + V3 4+ V}, from above analysis we obtain

LV =LVi + LVo + LV + LV,

- 1
Skz_: { — Ny <df — 20%k> xﬁ

1

5 [ B > BriSilia; + 2B BriSilia;

j=1 j=1

2
Yk
(%)
2k

n 2
lkékEI:II: - mkEZ ZﬁkjSZI;aj — lklza'gk‘| () (28)

— lk5kEZI;§ — (mk + nk)EZZng

1
2 Iy

Jj=1

n . n S* .
+ Mk Zﬁkjfj a; —ng df-f—ZﬁkjE—’kaj a; TRk
Jj=1 j=1 k
+mk25kj$kyk/ fi(7)z;(t —T)dT}
=1 0

=:LoV + Y mi Y BriTyk / fi(T)z;(t = T)dr,
k=1  j=1 0
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where

n n
5 [ B Y By Skl a; + 20k By B Siljay

J=1 J=1

(%)

n 2
* * * * * * Z
WOk Ep Iy —mu By Y BrySilia; — lklkagk] (I’“)
=1 k

— lk(SkE;IZ - (mk + nk)EZ2U§k

1
2

n n
S*
+ meBij;ajfnk df+25kjE—ﬁI;aj xkyk}.
j=1 j=1 k

In (28) we choose ny such that

n . n S* .
meBijjaj—nk df—l—ZBkjE—’inaj =0.
j=1 j=1 k

Then
mi > Brilta;
= — ’“275*1 Mo (30)
dp + 35 5kj1?’,21j aj
Let
k) S ST
ke 5]@[;;
ds n S ER peg ) ST S*T*a (31)
s ((di; + D251 Brj B 4% > j=1 BriSilia;

* n Sk 1%
Or (df +2 1 Bl aa‘)
Substituting (30) and (31) into (29) yields

- 1
LoV :Z { —ny {df — QU%k] T3

k=1

1 n
5 |7 B > BriSilia; — (mi + ny)Efo,
j=1

2
Yk
()

1

2

n 2
zZ
By BriSilia; — zkf;gggk] ( k>

I
=1 k

. 1
k=1

ma B2 (5 B Sty ag) 35y Brilja;
Ay By + 305 Brg

1
2
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m {208, (ASEL + S5y By (St + B I a; )
B T + 307 BriSil}a;
1 [mBR(C Bl (5 BuSiLay)
2 de;: + Z;;l BkjSZI;aj
(A Bz + 5y B (S5 + )L ay )
o (B¢ + Y, St Lia, )

n 2
* T * 2
=1 k

n
=— Z (Apzy + Bryi + Di2i)
k=1

Yk
Ly

where
s L o
Ak: = Nk |:dk - 201k:| s
mk’E;f(Z?:l BrjSilia;) Z?:l Brjl;a;
diE; + Y7 BriSilta;
miBifod, (4B} + S5 s (S + Bp)Tja;)
Ay B + 3250 B Sl ag ’
mkE;ckz(Z;‘l:l 51@]'[;%)(2?21 Br;Sil;aj)
dy By + Y00 BriSilia,
dRE; + 300 By (Sk + E;)I;aj>
Ok (de;; + 30 Bkjs;;l;aj)

< (> ﬁkjsgf;aj)mkf,:agk] .
j=1

1
Bk;:§

1
Dk:§

From (19), we have A > 0, By > 0 and Dy, > 0. Consequently

LV <= (Axa} + Biyi + Di2})
k=1

Fo ey B [ Hr)5(t -
k=1  j=1 0
Assume P{|z;(s)| < p} =1(p>0,5=1,2,--- ,n). Then

S > G [ )z rdr
k=1  j=1 0

n n 1 n n
<pY mi Y Brjaslwrye] < §szk > Brja; (i + vi) -
k=1 j=1 k=1 j=1
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Therefore,
Va3 [ b m e«
k—
1
By, — 50;77% Zlﬂkjaj vr + Dkzi}-
= Jj=

Consequently, for sufficiently small p > 0, we have LV < 0 except the zero point.
The conclusion follows immediately. This completes the proof of Theorem 4.3. [

Remark 2. By comparing Theorem 4.1 with Theorem 4.3, we can see that if the
positive equilibrium of the deterministic model (13) is stable, then the stochastic
system (12) will keep this nice property provided the noise is sufficiently small.

Numerical examples. Numerical examples are given by Matlab to demonstrate
the dynamical behavior of stochastic model (12). The main idea in simulations is the
Milstein method [38] by discretizing the differential equations. We do simulations
for k = 1,2 and f;(7) = e 7,7 > 0. The initial condition is I;(#) = v;e?,0 < 0,
where v; > 0. For k =1,2 and f;(7) =e 7,7 > 0, model (12) is

1 _ B b
dSy, = | A~ e fZﬁkjSkuj—e tgﬁkjsk/o e I;(r)dr | dt

— 3 Sk + o1x(Sy, — S;)dBu,

(33)

2 2 t
1 — — T
dE), = 56 ¢ E ﬂkjSk’Uj-i-e ¢ E 5kjSk/0 e Ij(T)dT dt
j=1 Jj=1

— (df + 6r)Ex + 021 (Ey — E;)dBoy,
dl, = [5kEk — (di + Y+ €k)Ik] dt + ng(Ik — Il:)dBSk

The discretization of model (33) is

2 i
S}(J-‘rl) _ S](Cz) :[Ak _ d’fsl(;) _ it Zﬂkjsl(cl) Z elAth(l) (T)At
j=1 1=

2
1 ; 7 i * / i
— §eszt E ﬂk]S,(C )U]} At+0'1k(51(€) - Sk) Atggk)

Jj=1

+ olks“ (8¢ = 80 [ - 1] A,

E](:+1)_ ](C :[ —zAtZB S’L)ZelAtIl) At-i— —zAtZﬁ S v;

j=1

— (dF + 64) B} }AHU%( — E{)VAIES)
+ 0B BB — B [(€8)? 1] A,

SRRy O [5,€E,<j) —(dL 4y + )V )} At + o5, (I — I7)VALES)

1 ), G . i
+ 5031«71& @) - 1) {( ;gk))Q - 1} At,
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where 5&), é?, :(,,Q (k = 1,2.) are independent random variables with normal dis-
tribution N(0,1), which can be generated numerically by pseudo-random number
generators. For simplicity, we always assume that df =dF = dé = dj, and parame-
ters take following values:

A1 :10, 611 = 00135, ,812 = 0.1, d1 = 0.1, 51 = 0.15, €1 = 005, Y1 = 08,
Ao =15, Boy = 0.0899, Boy = 0.24, dy = 0.15, d5 = 0.15, €3 = 0.05, v = 0.75,
(%1 :5, Vg = 10, 51(0) = 50, El(O) = 30, SQ(O) = 20, EQ(O) = 5.

The endemic equilibrium P, of model (33) is given by Sf = 10.9077, Ef = 35.6369,
If = 5.6269*,55 = 6.1632, E5 = 46.9184,15 = 7.4082. The basic reproduction
number is R; = 14.1371 > 1. For those parameters, condition (19) of Theorem 4.3
become

0%, <0.2000, o3, < 0.1750, o3, < 0.6650,

2 2 2 (34)
o2, <0.3000, 02, < 0.2506, 02, < 0.7936.

In the absence of noise, i.e. o = 0,71 = 1,2,3;k = 1,2, the global stability of the
endemic equilibrium corresponding deterministic model (33) is shown in Figure 1.

In Figure 2 oy (i=1,2,3,7 =1,2) are taken to be 013 = 0.05,09; = 0.1,03; =
0.15,012 = 0.1,092 = 0.12,032 = 0.15, satisfying the conditions of Theorem 4.3.
The numerical simulation shows the similar stability result to Theorem 4.3. We can
see that the stochastic model (33) preserves the stability property of the correspond-
ing deterministic model for small noises. Numerical results for o1; = 0.25,091 =
0.35,031 = 0.5,012 = 0.3, 092 = 0.45, 032 = 0.55 , satisfying conditions of (34), are
given in Figure 3. The endemic equilibrium of model (33) is also asymptotically
stable (see Figure 3). The comparison of Figures 2 and 3 shows that the solutions
of stochastic model (33) fluctuate at the beginning, and converge to the equilibrium
position finally. The fluctuations of the stochastic model (33) may enhance with
the increasing noises.

5. Conclusions. We have studied a multi-group SVEIR epidemic model with de-
lays and vaccination age. The global stability of model (8) is established by Lya-
punov functionals. The disease-free equilibrium is globally asymptotically stable
if Ry < 1, and the unique endemic equilibrium is globally asymptotically stable if

~ G0,
Ro > 1. We can define Ry = p((m = 5klii>noo Ry to investigate the
1<k,j<n _
influence of the latent period on Ry. It is obvious that Rg > Ro and 9Ro 0,

D05,
which implies that latent period has a positive role in disease control: a long latent

period may lead to the extinction of the disease. Similarly, the fact that

_ ArdrBrja; L
Rolen=o = p<df(df+5k)(d£+’}’k+€k) =TRg > Ro,
1<k,j<n

ORo _ _ Ayd,dy Do Brja;
o8, — P (@F+0r) (Al Tynter) (Ao +Erdy TE)?

<0
1<k,j<n
implies that the vaccination is very helpful to eradicate the disease. Though the

immunity of a vaccine may not be permanent, a long immunity period of vaccines
is still expected for diseases prevention.
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1103

We have investigated a multi-group stochastic model (12) with white noise per-
turbations. We obtained sufficient conditions for stochastic stability of model (12).
The results reveal that the stochastic stability of the endemic equilibrium depends
on the magnitude of the noise. Numerical simulations show that the stochastic
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FIGURE 3. Solutions of model (33) for o011 = 0.25, 021 = 0.35, 031 =
0.5, 012 = 0.3, 022 = 0.45, 032 = 0.55 and At = 0.001

model preserves the stability property of the corresponding deterministic model for
small noise.

Other factors, such as population migration, can be integrated into the model to
make it more realistic. The efficacy of some vaccines may not be 100% though it is
assumed that the vaccinated individuals can not be infected. It is more reasonable
to assume that the vaccinated individuals can be infected at a reduced rate [15].
Furthermore, we just suppose that the stochastic perturbations are proportional to
Sk —SE, By —E} and I, —I}. It is also interesting to study other types of stochastic
perturbations [33] and consider a stochastic system with nonlinear incidence.

Acknowledgments. The authors are grateful to the reviewers for their construc-
tive comments and suggestions.
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