Loading [Contrib]/a11y/accessibility-menu.js

Uniqueness of limit cycles and multiple attractors in a Gause-typepredator-prey model with nonmonotonic functional response and Allee effecton prey

  • Received: 01 October 2011 Accepted: 29 June 2018 Published: 01 January 2013
  • MSC : Primary: 92D25, 34C; Secondary: 58F14, 58F21.

  • The main purpose of this work is to analyze a Gause type predator-prey modelin which two ecological phenomena are considered: the Allee effect affectingthe prey growth function and the formation of group defence by prey in orderto avoid the predation.
        We prove the existence of a separatrix curves in the phase plane, determinedby the stable manifold of the equilibrium point associated to the Alleeeffect, implying that the solutions are highly sensitive to the initialconditions.
        Trajectories starting at one side of this separatrix curve have theequilibrium point $(0,0)$ as their $\omega $-limit, while trajectoriesstarting at the other side will approach to one of the following threeattractors: a stable limit cycle, a stable coexistence point or the stableequilibrium point $(K,0)$ in which the predators disappear andprey attains their carrying capacity.
        We obtain conditions on the parameter values for the existence of one or twopositive hyperbolic equilibrium points and the existence of a limit cyclesurrounding one of them. Both ecological processes under study, namely thenonmonotonic functional response and the Allee effect on prey, exert astrong influence on the system dynamics, resulting in multiple domains ofattraction.
        Using Liapunov quantities we demonstrate the uniqueness of limit cycle, whichconstitutes one of the main differences with the model where the Alleeeffect is not considered. Computer simulations are also given in support ofthe conclusions.

    Citation: Eduardo González-Olivares, Betsabé González-Yañez, Jaime Mena-Lorca, José D. Flores. Uniqueness of limit cycles and multiple attractors in a Gause-typepredator-prey model with nonmonotonic functional response and Allee effecton prey[J]. Mathematical Biosciences and Engineering, 2013, 10(2): 345-367. doi: 10.3934/mbe.2013.10.345

    Related Papers:

    [1] Zhenliang Zhu, Yuming Chen, Zhong Li, Fengde Chen . Dynamic behaviors of a Leslie-Gower model with strong Allee effect and fear effect in prey. Mathematical Biosciences and Engineering, 2023, 20(6): 10977-10999. doi: 10.3934/mbe.2023486
    [2] Mengyun Xing, Mengxin He, Zhong Li . Dynamics of a modified Leslie-Gower predator-prey model with double Allee effects. Mathematical Biosciences and Engineering, 2024, 21(1): 792-831. doi: 10.3934/mbe.2024034
    [3] Kawkab Al Amri, Qamar J. A Khan, David Greenhalgh . Combined impact of fear and Allee effect in predator-prey interaction models on their growth. Mathematical Biosciences and Engineering, 2024, 21(10): 7211-7252. doi: 10.3934/mbe.2024319
    [4] Yun Kang, Sourav Kumar Sasmal, Amiya Ranjan Bhowmick, Joydev Chattopadhyay . Dynamics of a predator-prey system with prey subject to Allee effects and disease. Mathematical Biosciences and Engineering, 2014, 11(4): 877-918. doi: 10.3934/mbe.2014.11.877
    [5] Yuhong Huo, Gourav Mandal, Lakshmi Narayan Guin, Santabrata Chakravarty, Renji Han . Allee effect-driven complexity in a spatiotemporal predator-prey system with fear factor. Mathematical Biosciences and Engineering, 2023, 20(10): 18820-18860. doi: 10.3934/mbe.2023834
    [6] Yongli Cai, Malay Banerjee, Yun Kang, Weiming Wang . Spatiotemporal complexity in a predator--prey model with weak Allee effects. Mathematical Biosciences and Engineering, 2014, 11(6): 1247-1274. doi: 10.3934/mbe.2014.11.1247
    [7] Manoj K. Singh, Brajesh K. Singh, Poonam, Carlo Cattani . Under nonlinear prey-harvesting, effect of strong Allee effect on the dynamics of a modified Leslie-Gower predator-prey model. Mathematical Biosciences and Engineering, 2023, 20(6): 9625-9644. doi: 10.3934/mbe.2023422
    [8] Shuangte Wang, Hengguo Yu . Stability and bifurcation analysis of the Bazykin's predator-prey ecosystem with Holling type Ⅱ functional response. Mathematical Biosciences and Engineering, 2021, 18(6): 7877-7918. doi: 10.3934/mbe.2021391
    [9] Fang Liu, Yanfei Du . Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857
    [10] Juan Ye, Yi Wang, Zhan Jin, Chuanjun Dai, Min Zhao . Dynamics of a predator-prey model with strong Allee effect and nonconstant mortality rate. Mathematical Biosciences and Engineering, 2022, 19(4): 3402-3426. doi: 10.3934/mbe.2022157
  • The main purpose of this work is to analyze a Gause type predator-prey modelin which two ecological phenomena are considered: the Allee effect affectingthe prey growth function and the formation of group defence by prey in orderto avoid the predation.
        We prove the existence of a separatrix curves in the phase plane, determinedby the stable manifold of the equilibrium point associated to the Alleeeffect, implying that the solutions are highly sensitive to the initialconditions.
        Trajectories starting at one side of this separatrix curve have theequilibrium point $(0,0)$ as their $\omega $-limit, while trajectoriesstarting at the other side will approach to one of the following threeattractors: a stable limit cycle, a stable coexistence point or the stableequilibrium point $(K,0)$ in which the predators disappear andprey attains their carrying capacity.
        We obtain conditions on the parameter values for the existence of one or twopositive hyperbolic equilibrium points and the existence of a limit cyclesurrounding one of them. Both ecological processes under study, namely thenonmonotonic functional response and the Allee effect on prey, exert astrong influence on the system dynamics, resulting in multiple domains ofattraction.
        Using Liapunov quantities we demonstrate the uniqueness of limit cycle, whichconstitutes one of the main differences with the model where the Alleeeffect is not considered. Computer simulations are also given in support ofthe conclusions.


    [1] in "Proceedings of the Third Brazilian Symposium on Mathematical and Computational Biology" (ed. R. Mondaini ), E-Papers Serviços Editoriais Ltda, Río de Janeiro, 2 (2004), 206-217.
    [2] SIAM Journal on Applied Mathematics, 69 (2009), 1244-1262.
    [3] Chapman and Hall, 1992.
    [4] World Scientific, 1998.
    [5] Trends in Ecology and Evolution, 22 (2007), 185-191.
    [6] Journal of Theoretical Biology, 218 (2002), 375-394.
    [7] (2nd edition), Texts in Applied Mathematics 34, Springer, 2006.
    [8] (2nd edition), John Wiley and Sons, 1990.
    [9] Cambridge University Press, 2007.
    [10] in "Differential Equations Model" (eds. M. Braun, C. S. Coleman and D. Drew ), Springer Verlag, (1983), 279-297.
    [11] Journal of Mathematical Biology, 36 (1997), 149-168.
    [12] SIAM Journal on Applied Mathematics, 46 (1986), 630-642.
    [13] Trends in Ecology and Evolution, 14 (1999), 405-410.
    [14] Oxford University Press, 2008.
    [15] Springer, 2006.
    [16] Marcel Dekker, 1980.
    [17] Bulletin of Mathematical Biology, 48 (1986), 493-508.
    [18] Mathematics an its applications, 559, Kluwer Academic Publishers, 2003.
    [19] Journal of Applied Ecology, 41 (2004), 801-810.
    [20] Discrete and Continuous Dynamical Systems, 6 (2006), 525-534.
    [21] in "Proceedings of the 2006 International Symposium on Mathematical and Computational Biology" (ed. R. Mondaini), E-papers Serviços Editoriais Ltda. Rio de Janeiro, (2007), 53-71.
    [22] Nonlinear Analysis: Real World and Applications, 12 (2011), 2931-2942.
    [23] Bulletin of Mathematical Biology, 73 (2011), 1378-1397.
    [24] Applied Mathematical Modelling, 35 (2011), 366-381.
    [25] in "Proceedings of the Third Brazilian Symposium on Mathematical and Computational Biology" (ed. R. Mondaini), E-Papers Serviços Editoriais Ltda, Río de Janeiro, 2 (2004), 358-373.
    [26] Journal of Mathematical Biology, 60 (2010), 59-74.
    [27] Cambridge University Press, 2001.
    [28] Mathematical Biosciences, 88 (1988), 67-84.
    [29] Fish and Fisheries, 2 (2001), 33-58.
    [30] (3rd ed), Texts in Applied Mathematics 7, Springer-Verlag, 2001.
    [31] in "Proceedings of the 2006 International Symposium on Mathematical and Computational Biology" (ed. R. Mondaini), E-papers Serviços Editoriais Ltda., (2007), 295-321.
    [32] SIAM Journal of Applied Mathematics, 61 (2001), 1445-1472.
    [33] Trends in Ecology and Evolution, 14 (1999), 401-405.
    [34] Oikos, 87 (1999), 185-190.
    [35] Chapman and Hall, 1984.
    [36] Monographs in Population Biology 35, Princeton University Press, 2003.
    [37] Mathematical Biosciences, 209 (2007), 451-469.
    [38] in "Proceedings of the Third Brazilian Symposium on Mathematical and Computational Biology" (ed. R. Mondaini), E-Papers Serviços Editoriais Ltda, Río de Janeiro, 2 (2004), 181-192.
    [39] Journal of Mathematical Biology, 62 (2011), 291-331.
    [40] (2nd edition), Wolfram Research, Addison Wesley, 1991.
    [41] SIAM Journal on Applied Mathematics, 48 (1988), 592-606.
    [42] International Journal of Bifurcation and Chaos, 11 (2001), 2123-2131.
    [43] Nonlinearity, 16 (2003), 1185-1201.
    [44] SIAM Journal on Applied Mathematics, 63 (2002), 636-682.
    [45] Applied Mathematics and Computation, 217 (2010), 3542-3556.
  • This article has been cited by:

    1. Ruiwen WU, Xiuxiang LIU, Dynamics of a predator-prey system with a mate-finding Allee effect on prey, 2017, 41, 13000098, 585, 10.3906/mat-1411-8
    2. Ruiwen Wu, Xiuxiang Liu, Dynamics of a Predator-Prey System with a Mate-Finding Allee Effect, 2014, 2014, 1085-3375, 1, 10.1155/2014/673424
    3. J. Leonel Rocha, Abdel-Kaddous Taha, D. Fournier-Prunaret, Allee’s dynamics and bifurcation structures in von Bertalanffy’s population size functions, 2018, 990, 1742-6588, 012011, 10.1088/1742-6596/990/1/012011
    4. Pablo Aguirre, José D. Flores, Eduardo González-Olivares, Bifurcations and global dynamics in a predator–prey model with a strong Allee effect on the prey, and a ratio-dependent functional response, 2014, 16, 14681218, 235, 10.1016/j.nonrwa.2013.10.002
    5. Nicole Martínez-Jeraldo, Pablo Aguirre, Allee effect acting on the prey species in a Leslie–Gower predation model, 2019, 45, 14681218, 895, 10.1016/j.nonrwa.2018.08.009
    6. J. Leonel Rocha, Abdel-Kaddous Taha, Danièle Fournier-Prunaret, Big bang bifurcations in von Bertalanffy’s dynamics with strong and weak Allee effects, 2016, 84, 0924-090X, 607, 10.1007/s11071-015-2510-6
    7. Viviana Rivera, Pablo Aguirre, Study of a Tritrophic Food Chain Model with Non-differentiable Functional Response, 2020, 165, 0167-8019, 19, 10.1007/s10440-019-00239-3
    8. J. Leonel Rocha, Danièle Fournier-Prunaret, Abdel-Kaddous Taha, Strong and weak Allee effects and chaotic dynamics in Richards' growths, 2013, 18, 1553-524X, 2397, 10.3934/dcdsb.2013.18.2397
    9. Pablo Aguirre, A general class of predation models with multiplicative Allee effect, 2014, 78, 0924-090X, 629, 10.1007/s11071-014-1465-3
    10. Alessandro Arsie, Chanaka Kottegoda, Chunhua Shan, High Codimension Bifurcations of a Predator–Prey System with Generalized Holling Type III Functional Response and Allee Effects, 2022, 1040-7294, 10.1007/s10884-022-10214-6
    11. Feifan Zhang, Hao Tian, Hongfan Zhao, Xinran Zhang, Qiyu Shi, Spatiotemporal Pattern Formation in a Discrete Toxic-Phytoplankton–Zooplankton Model with Cross-Diffusion and Weak Allee Effect, 2022, 32, 0218-1274, 10.1142/S0218127422501565
    12. Alessandro Arsie, Chanaka Kottegoda, Chunhua Shan, A predator-prey system with generalized Holling type IV functional response and Allee effects in prey, 2022, 309, 00220396, 704, 10.1016/j.jde.2021.11.041
    13. Uttam Ghosh, Susmita Sarkar, Prabir Chakraborty, Stability and Bifurcation Analysis of a Discrete Prey-Predator Model with Mate-Finding Allee, Holling Type-I Functional Response and Predator Harvesting, 2022, 52, 0103-9733, 10.1007/s13538-022-01189-2
    14. Arturo Mena-Lorca, Jaime Mena-Lorca, Astrid Morales-Soto, 2022, Chapter 16, 978-3-031-04270-6, 347, 10.1007/978-3-031-04271-3_16
    15. Henan Wang, Ping Liu, Pattern dynamics of a predator–prey system with cross-diffusion, Allee effect and generalized Holling IV functional response, 2023, 171, 09600779, 113456, 10.1016/j.chaos.2023.113456
    16. Zuchong Shang, Yuanhua Qiao, Bifurcation analysis in a predator–prey model with strong Allee effect on prey and density‐dependent mortality of predator, 2023, 0170-4214, 10.1002/mma.9793
    17. Manoj Kumar Singh, Arushi Sharma, Luis M. Sánchez-Ruiz, Impact of the Allee Effect on the Dynamics of a Predator–Prey Model Exhibiting Group Defense, 2025, 13, 2227-7390, 633, 10.3390/math13040633
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3362) PDF downloads(574) Cited by(17)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog