Citation: Eduardo González-Olivares, Betsabé González-Yañez, Jaime Mena-Lorca, José D. Flores. Uniqueness of limit cycles and multiple attractors in a Gause-typepredator-prey model with nonmonotonic functional response and Allee effecton prey[J]. Mathematical Biosciences and Engineering, 2013, 10(2): 345-367. doi: 10.3934/mbe.2013.10.345
[1] | Zhenliang Zhu, Yuming Chen, Zhong Li, Fengde Chen . Dynamic behaviors of a Leslie-Gower model with strong Allee effect and fear effect in prey. Mathematical Biosciences and Engineering, 2023, 20(6): 10977-10999. doi: 10.3934/mbe.2023486 |
[2] | Mengyun Xing, Mengxin He, Zhong Li . Dynamics of a modified Leslie-Gower predator-prey model with double Allee effects. Mathematical Biosciences and Engineering, 2024, 21(1): 792-831. doi: 10.3934/mbe.2024034 |
[3] | Kawkab Al Amri, Qamar J. A Khan, David Greenhalgh . Combined impact of fear and Allee effect in predator-prey interaction models on their growth. Mathematical Biosciences and Engineering, 2024, 21(10): 7211-7252. doi: 10.3934/mbe.2024319 |
[4] | Yun Kang, Sourav Kumar Sasmal, Amiya Ranjan Bhowmick, Joydev Chattopadhyay . Dynamics of a predator-prey system with prey subject to Allee effects and disease. Mathematical Biosciences and Engineering, 2014, 11(4): 877-918. doi: 10.3934/mbe.2014.11.877 |
[5] | Yuhong Huo, Gourav Mandal, Lakshmi Narayan Guin, Santabrata Chakravarty, Renji Han . Allee effect-driven complexity in a spatiotemporal predator-prey system with fear factor. Mathematical Biosciences and Engineering, 2023, 20(10): 18820-18860. doi: 10.3934/mbe.2023834 |
[6] | Yongli Cai, Malay Banerjee, Yun Kang, Weiming Wang . Spatiotemporal complexity in a predator--prey model with weak Allee effects. Mathematical Biosciences and Engineering, 2014, 11(6): 1247-1274. doi: 10.3934/mbe.2014.11.1247 |
[7] | Manoj K. Singh, Brajesh K. Singh, Poonam, Carlo Cattani . Under nonlinear prey-harvesting, effect of strong Allee effect on the dynamics of a modified Leslie-Gower predator-prey model. Mathematical Biosciences and Engineering, 2023, 20(6): 9625-9644. doi: 10.3934/mbe.2023422 |
[8] | Shuangte Wang, Hengguo Yu . Stability and bifurcation analysis of the Bazykin's predator-prey ecosystem with Holling type Ⅱ functional response. Mathematical Biosciences and Engineering, 2021, 18(6): 7877-7918. doi: 10.3934/mbe.2021391 |
[9] | Fang Liu, Yanfei Du . Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857 |
[10] | Juan Ye, Yi Wang, Zhan Jin, Chuanjun Dai, Min Zhao . Dynamics of a predator-prey model with strong Allee effect and nonconstant mortality rate. Mathematical Biosciences and Engineering, 2022, 19(4): 3402-3426. doi: 10.3934/mbe.2022157 |
[1] | in "Proceedings of the Third Brazilian Symposium on Mathematical and Computational Biology" (ed. R. Mondaini ), E-Papers Serviços Editoriais Ltda, Río de Janeiro, 2 (2004), 206-217. |
[2] | SIAM Journal on Applied Mathematics, 69 (2009), 1244-1262. |
[3] | Chapman and Hall, 1992. |
[4] | World Scientific, 1998. |
[5] | Trends in Ecology and Evolution, 22 (2007), 185-191. |
[6] | Journal of Theoretical Biology, 218 (2002), 375-394. |
[7] | (2nd edition), Texts in Applied Mathematics 34, Springer, 2006. |
[8] | (2nd edition), John Wiley and Sons, 1990. |
[9] | Cambridge University Press, 2007. |
[10] | in "Differential Equations Model" (eds. M. Braun, C. S. Coleman and D. Drew ), Springer Verlag, (1983), 279-297. |
[11] | Journal of Mathematical Biology, 36 (1997), 149-168. |
[12] | SIAM Journal on Applied Mathematics, 46 (1986), 630-642. |
[13] | Trends in Ecology and Evolution, 14 (1999), 405-410. |
[14] | Oxford University Press, 2008. |
[15] | Springer, 2006. |
[16] | Marcel Dekker, 1980. |
[17] | Bulletin of Mathematical Biology, 48 (1986), 493-508. |
[18] | Mathematics an its applications, 559, Kluwer Academic Publishers, 2003. |
[19] | Journal of Applied Ecology, 41 (2004), 801-810. |
[20] | Discrete and Continuous Dynamical Systems, 6 (2006), 525-534. |
[21] | in "Proceedings of the 2006 International Symposium on Mathematical and Computational Biology" (ed. R. Mondaini), E-papers Serviços Editoriais Ltda. Rio de Janeiro, (2007), 53-71. |
[22] | Nonlinear Analysis: Real World and Applications, 12 (2011), 2931-2942. |
[23] | Bulletin of Mathematical Biology, 73 (2011), 1378-1397. |
[24] | Applied Mathematical Modelling, 35 (2011), 366-381. |
[25] | in "Proceedings of the Third Brazilian Symposium on Mathematical and Computational Biology" (ed. R. Mondaini), E-Papers Serviços Editoriais Ltda, Río de Janeiro, 2 (2004), 358-373. |
[26] | Journal of Mathematical Biology, 60 (2010), 59-74. |
[27] | Cambridge University Press, 2001. |
[28] | Mathematical Biosciences, 88 (1988), 67-84. |
[29] | Fish and Fisheries, 2 (2001), 33-58. |
[30] | (3rd ed), Texts in Applied Mathematics 7, Springer-Verlag, 2001. |
[31] | in "Proceedings of the 2006 International Symposium on Mathematical and Computational Biology" (ed. R. Mondaini), E-papers Serviços Editoriais Ltda., (2007), 295-321. |
[32] | SIAM Journal of Applied Mathematics, 61 (2001), 1445-1472. |
[33] | Trends in Ecology and Evolution, 14 (1999), 401-405. |
[34] | Oikos, 87 (1999), 185-190. |
[35] | Chapman and Hall, 1984. |
[36] | Monographs in Population Biology 35, Princeton University Press, 2003. |
[37] | Mathematical Biosciences, 209 (2007), 451-469. |
[38] | in "Proceedings of the Third Brazilian Symposium on Mathematical and Computational Biology" (ed. R. Mondaini), E-Papers Serviços Editoriais Ltda, Río de Janeiro, 2 (2004), 181-192. |
[39] | Journal of Mathematical Biology, 62 (2011), 291-331. |
[40] | (2nd edition), Wolfram Research, Addison Wesley, 1991. |
[41] | SIAM Journal on Applied Mathematics, 48 (1988), 592-606. |
[42] | International Journal of Bifurcation and Chaos, 11 (2001), 2123-2131. |
[43] | Nonlinearity, 16 (2003), 1185-1201. |
[44] | SIAM Journal on Applied Mathematics, 63 (2002), 636-682. |
[45] | Applied Mathematics and Computation, 217 (2010), 3542-3556. |
1. | Ruiwen WU, Xiuxiang LIU, Dynamics of a predator-prey system with a mate-finding Allee effect on prey, 2017, 41, 13000098, 585, 10.3906/mat-1411-8 | |
2. | Ruiwen Wu, Xiuxiang Liu, Dynamics of a Predator-Prey System with a Mate-Finding Allee Effect, 2014, 2014, 1085-3375, 1, 10.1155/2014/673424 | |
3. | J. Leonel Rocha, Abdel-Kaddous Taha, D. Fournier-Prunaret, Allee’s dynamics and bifurcation structures in von Bertalanffy’s population size functions, 2018, 990, 1742-6588, 012011, 10.1088/1742-6596/990/1/012011 | |
4. | Pablo Aguirre, José D. Flores, Eduardo González-Olivares, Bifurcations and global dynamics in a predator–prey model with a strong Allee effect on the prey, and a ratio-dependent functional response, 2014, 16, 14681218, 235, 10.1016/j.nonrwa.2013.10.002 | |
5. | Nicole Martínez-Jeraldo, Pablo Aguirre, Allee effect acting on the prey species in a Leslie–Gower predation model, 2019, 45, 14681218, 895, 10.1016/j.nonrwa.2018.08.009 | |
6. | J. Leonel Rocha, Abdel-Kaddous Taha, Danièle Fournier-Prunaret, Big bang bifurcations in von Bertalanffy’s dynamics with strong and weak Allee effects, 2016, 84, 0924-090X, 607, 10.1007/s11071-015-2510-6 | |
7. | Viviana Rivera, Pablo Aguirre, Study of a Tritrophic Food Chain Model with Non-differentiable Functional Response, 2020, 165, 0167-8019, 19, 10.1007/s10440-019-00239-3 | |
8. | J. Leonel Rocha, Danièle Fournier-Prunaret, Abdel-Kaddous Taha, Strong and weak Allee effects and chaotic dynamics in Richards' growths, 2013, 18, 1553-524X, 2397, 10.3934/dcdsb.2013.18.2397 | |
9. | Pablo Aguirre, A general class of predation models with multiplicative Allee effect, 2014, 78, 0924-090X, 629, 10.1007/s11071-014-1465-3 | |
10. | Alessandro Arsie, Chanaka Kottegoda, Chunhua Shan, High Codimension Bifurcations of a Predator–Prey System with Generalized Holling Type III Functional Response and Allee Effects, 2022, 1040-7294, 10.1007/s10884-022-10214-6 | |
11. | Feifan Zhang, Hao Tian, Hongfan Zhao, Xinran Zhang, Qiyu Shi, Spatiotemporal Pattern Formation in a Discrete Toxic-Phytoplankton–Zooplankton Model with Cross-Diffusion and Weak Allee Effect, 2022, 32, 0218-1274, 10.1142/S0218127422501565 | |
12. | Alessandro Arsie, Chanaka Kottegoda, Chunhua Shan, A predator-prey system with generalized Holling type IV functional response and Allee effects in prey, 2022, 309, 00220396, 704, 10.1016/j.jde.2021.11.041 | |
13. | Uttam Ghosh, Susmita Sarkar, Prabir Chakraborty, Stability and Bifurcation Analysis of a Discrete Prey-Predator Model with Mate-Finding Allee, Holling Type-I Functional Response and Predator Harvesting, 2022, 52, 0103-9733, 10.1007/s13538-022-01189-2 | |
14. | Arturo Mena-Lorca, Jaime Mena-Lorca, Astrid Morales-Soto, 2022, Chapter 16, 978-3-031-04270-6, 347, 10.1007/978-3-031-04271-3_16 | |
15. | Henan Wang, Ping Liu, Pattern dynamics of a predator–prey system with cross-diffusion, Allee effect and generalized Holling IV functional response, 2023, 171, 09600779, 113456, 10.1016/j.chaos.2023.113456 | |
16. | Zuchong Shang, Yuanhua Qiao, Bifurcation analysis in a predator–prey model with strong Allee effect on prey and density‐dependent mortality of predator, 2023, 0170-4214, 10.1002/mma.9793 | |
17. | Manoj Kumar Singh, Arushi Sharma, Luis M. Sánchez-Ruiz, Impact of the Allee Effect on the Dynamics of a Predator–Prey Model Exhibiting Group Defense, 2025, 13, 2227-7390, 633, 10.3390/math13040633 |