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Abstract. The main purpose of this work is to analyze a Gause type predator-

prey model in which two ecological phenomena are considered: the Allee effect

affecting the prey growth function and the formation of group defence by prey
in order to avoid the predation.

We prove the existence of a separatrix curves in the phase plane, determined

by the stable manifold of the equilibrium point associated to the Allee effect,
implying that the solutions are highly sensitive to the initial conditions.

Trajectories starting at one side of this separatrix curve have the equilibrium

point (0, 0) as their ω-limit, while trajectories starting at the other side will
approach to one of the following three attractors: a stable limit cycle, a stable

coexistence point or the stable equilibrium point (K, 0) in which the predators
disappear and prey attains their carrying capacity.

We obtain conditions on the parameter values for the existence of one or

two positive hyperbolic equilibrium points and the existence of a limit cycle
surrounding one of them. Both ecological processes under study, namely the

nonmonotonic functional response and the Allee effect on prey, exert a strong

influence on the system dynamics, resulting in multiple domains of attraction.
Using Liapunov quantities we demonstrate the uniqueness of limit cycle,

which constitutes one of the main differences with the model where the Allee
effect is not considered. Computer simulations are also given in support of the
conclusions.

1. Introduction. Current theory of predator-prey dynamics rests necessarily on
the study of non-linear mathematical models [36]. The model, as a unit of study, is
assumed to be representative of the natural phenomena of interest and should cap-
ture the essence of that process. With the development of ecological knowledge due
to theoretical, empirical, and observational research, more elements are recognized
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as essential to the phenomenon of predation and accordingly, modelers have added
complexity to their abstractions in order to gain realism.

Allee effect affecting the prey population and formation of defence group are
one of those, influencing qualitative stability and quantitative aspects of dynamics
in predation models. The influences of this phenomena as a potential mechanism
of population oscillations is an important objective of this present work. They
are represented by inverse density-dependence of the prey growth rate [13] and a
non-monotonic functional response [35], respectively.

We have focused in determining the stability of the system and particularly in
establishing the quantity of limit cycles originated by multiple Hopf bifurcations
[7, 18], surrounding a positive equilibrium point of the center-focus type [7]. Our
analysis will have in mind a similar model without considering the Allee effect in
the growth prey population, which has exactly two limit cycles around a unique
positive equilibrium point [22].

This result is related with solving the well-known Hilbert 16th Problem (pro-
posed by David Hilbert in 1900) on the maximum number and relative position
of limit cycles [10, 18]. This question also yet remains unsolved in the case of a
two-dimensional polynomial differential equation systems, whose degree must be
less than or equal to n ∈ N [18]. Particularly, for the Gause type predator-prey
models, the problem is unanswered [10]; using the Lyapunov quantities method [7],
we will try to answer this problem constituting one of our goals.

The studied system is defined in an open positive invariant region and the
Poincaré–Bendixon theorem does not apply. Due to the existence of an heteroclinic
curve determined by the equilibrium point associated to the strong Allee effect, a
subregion in the phase plane is determined, where two positive equilibrium points
can exist.

This paper is organized as follows: In the subsequent subsections, we present
the main features of the Gause type predator models, the Allee effect and the non-
monotonic functional response. In Section 2, a model topologically equivalent to
the Gause type predator–prey model is obtained; in Section 3, the main properties
of this model are presented. Ecological consequences of the mathematical results
are given in Section 4.

1.1. Gause-type predator-prey models. The classical Gause-type predator-
prey model [16] is continuous-time model represented by the second order differential
equations system:

G :

{
dx
dt = x g (x) − h (x) y
dy
dt = (ψ(x)− c) y

(1)

where x(t) and y(t) denote the population size (number, density or biomass) of prey
and predator, respectively; in order to establish a general theory of predation, the
functions f(x), h(x) and ψ(x) are smooth as required for t ≥ 0 [26, 43] representing
the natural per capita growth function, the functional response and the numerical
response of predators, respectively.

Different forms for these functions have been proposed rendering a large variety
of predator-prey models [36]. Usually, h (x) can be assumed to be a constant, or
a function dependent on x [16] and g (x) = x f (x) the logistic growth function,
meanwhile function ψ (x) is assumed linear respect to h (x).
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Some issues of interest in these types of models are: i) to determine properties
of the functions g, h and ψ for the existence or non-existence of limit cycles [26, 28,
43], ii) to establish the number of limit cycles that can bifurcate of the a positive
equilibrium point of the center-focus type [7, 22, 31] and, iii) to derive results for
ensure that local asymptotically stability, which in the Liapunov sense implies global
stability of the unique positive equilibrium point [26].

1.2. The Allee effect. Any ecological mechanism leading to a positive relationship
between a component of individual fitness and the abundance of conspecific is a
mechanism of the Allee effect [13, 33]. In Population Dynamics it has been also
called: negative competition effect, allelocatalysis, undercrowding, negative density
dependence, inverse density dependence, positive density dependence or automatic
cooperation [29], and depensation in fisheries sciences [8, 29].

The Allee effect dynamics may appear due to a wide range of biological phenom-
ena, such as reduced antipredator vigilance, social thermoregulation, genetic drift,
mating difficulty, reduced defense against the predator, and deficient feeding to low
densities [13, 33, 34]. However, several other causes may generate these phenomena
(see Table 1 in [5] or Table 2.1 in [14]).

Recent ecological research suggests that two or more Allee effects can lead to
mechanisms acting simultaneously on a single population (see Table 2 in [5]); the
combined influence of some of these phenomena is known as multiple Allee effect
[5].

The simplest phenomenological form for growth rate in a population affected by
the Allee effect, obtained modifying the logistic growth rate, is described by a cubic
polynomial differential equation [4, 27]

dx
dt = r

(
1− x

K

)
(x−m)x (2)

where −K < m << K and r > 0 is a constant related to how fast the population
will grow at its maximum possible growth rate. We named multiplicative Allee effect
to this form [2, 25, 31].

When m > 0, the population growth rate decreases if the population size is below
the threshold level m and the population goes to extinction. In this case, equation
(2) describes the strong Allee effect [37, 39].

If −K < m ≤ 0, it is said that the population is affected by a weak Allee effect
[8, 39]. In fisheries the same phenomena are called critical and pure depensation,
respectively [8, 9, 29]. When m < 0 the right side of equation (2) describes a
compensatory curve and for m ≥ 0 the curve is depensatory [8, 9]. In this work, we
consider that m ≥ 0.

Many algebraic forms can be employed to describe the Allee effect [6, 12, 39, 45]
but it is possible to prove that many of them are topologically equivalent [21].
Nonetheless, different forms may produce a change in the quantity of limit cycles
surrounding a positive equilibrium point in predator–prey models [2, 23, 24, 25, 31].

1.3. Non-monotonic functional response. The predator functional response or
consumption rate function expresses the consumption rate of prey per predator as a
function of prey abundance. Here, we assume that this function is non-monotonic
and described by the rational function h(x) = q x

x2 + a , which tends to 0, as x→∞.
This function corresponds to the dome-shaped Holling type-IV functional response
[35] or simplified Monod-Haldane function [32] and can be regarded as a modification
of the Holling type-II function.
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A non-monotonic functional response can be used to describe a type of antipreda-
tor behavior (APB) called group defence; this term describes the phenomenon
whereby predators decrease, or are even prevented altogether, due to the increased
ability of the prey to better defend or disguise themselves when their number is
large enough [17, 32, 41, 42], that is, it indicates a decreasing risk of being eaten by
predators as prey number is large.

Another manifestation of an APB in which a non-monotonic functional response
(or Holling-type IV or Monod-Haldane) can be used is the phenomenon of aggrega-
tion, a social behavior of prey in which prey congregate on a fine scale relative to
the predator so that the predator’s hunting is not spatially homogeneous [35], such
as succeeds with mile-long schools of certain class of fishes. In this case, a primary
advantage of schooling seems to be confusion of the predator when it attacks. The
more important benefit of aggregation is an increasing in wariness. Moreover, ag-
gregation can both decrease the vulnerability to be attacked and increase the time
that group members can devote to activities other than surveillance [35].

Other related example of non-monotone consumption occurs at the microbial
level where evidence indicates that when faced with overabundance of nutrients the
effectiveness of the consumer can begin to decline. This is often seen when micro-
organism are used for waste treatment and water purification, a phenomenon which
has been called inhibition [17, 32, 43].

Without consider the Allee effect, the model is analyzed in [32], and in [20] is
proved that for a subset of the parameter space there exists a unique equilibrium
point surrounded by two limit cycles, the innermost unstable and the outermost
stable.

A function of the form h(x) = qx
a+bx+x2 , also satisfies the assumptions of the

Holling type-IV functional response, and it is used by Collings [11] in a mite
predator-prey model of Leslie type [36] with some temperature-dependency. Also
in [44], for a Gause type model using this functional response it is shown that there
exists a Bogdanov-Takens bifurcation of codimension 3, which acts as an organizing
center for the system.

Furthermore, Gause type models with non-monotonic functional response have

been partially analyzed when h(x) = qxm

a+xn , with m < n [1, 38] and it has been
proved that the resulting dynamics are not topologically equivalent, in general.

We note that the phenomena of the Allee effect and aggregation described by a
non-monotonic functional response are quite compatible and justify our assumptions
in the model studied. Although it may seem that the two aspects considered in the
model contradict each other since the prey population exhibits the Allee effect
for low densities, while a non-monotonic functional response is suggested for the
aggregation (group defense) when the prey population size is large, it is known that
predation induces an Allee effect [19].

Strikingly, a wide range of predator-driven Allee effects have been reported [5]; in
particular, there is the case of the Atlantic cod (Gadus morhua) that forms schools
during the day, since commercial fishing (men as predator) provokes stock collapse
because a higher proportion of this aggregated population is caught per unit effort
when population declines [9].

Also, for obligatory cooperative breeders as the African wild dog (Lycaon pictus)
and meerkat (Suricata suricatta), there is a similar situation, because juvenile sur-
vival is lower in small groups than large groups in areas with high predator densities
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but lower in large groups than small groups in areas with low predator densities
[14].

2. The model. The model considering Allee effect on prey and non-monotonic
functional response is given by

Xµ :


dx
dt =

(
r
(
1− x

K

)
(x−m) − q y

x2 + a

)
x

dy
dt =

(
p x

x2 + a − c
)
y

(3)

System (3) or vector field Xµ, is a Kolmogorov type system [16] defined in
Ω = {(x, y) ∈ R2| x ≥ 0, y ≥ 0} = R+

0 ×R
+
0 , where µ = (r,K, q, a, p, c,m) ∈

R6
+ × R with 0 < a < K and −K < m� K.
The parameters have the following ecological meanings:
r is the intrinsic per capita growth rate or biotic potential of prey,
K is the prey carrying capacity,
m is the minimum viable population, i.e., the threshold below which the popu-

lation goes to extinction,
q is the per capita attack rate of predators,√
a is the amount of prey at which predation rate is maximal,

p is the conversion efficiency of consumed prey into new predators, and
c is the per capita mortality rate of predators.

The equilibrium points of system (3) are O = (0, 0), Qm = (m, 0), QK = (K, 0)
and Q1 = (x1, y1) and Q2 = (x2, y2), where Q1, Q2 exist in Ω, if and only if,
p2 − 4ac2 ≥ 0 and y1, y2 > 0.

In order to simplify the calculus, we reduce the system (3) to a normal form [7],
following the methodology used in [20, 22, 31], we make a change of variables and
a time rescaling given by the function

ϕ : Ω̄× R −→ Ω× R with
Ω̄ =

{
(u, v) ∈ R2/u ≥ 0 and v ≥ 0

}
such that

ϕ(u, v, τ) =

(
Ku, K

2r
q v,

(K2u2+a) τ
rK2

)
= (x, y, t); thus,

detDϕ (u, v, τ) = K(K2u2+a)
q > 0.

Then, ϕ is a diffeomorphism [7] that preserves the orientation of the time; hence,
we obtain a qualitatively (topologically) equivalent vector field Yν = ϕ◦Xµ, which

has the form Yν = P (u, v) ∂
∂u +Q(u, v) ∂∂v [15].

The associated second order differential equations system is the following Kol-
mogorov type polynomial [16]:

Yν :

{
du
dτ =

(
(1− u) (u−M)

(
A+ u2

)
− v

)
u

dv
dτ = B

(
u− C(A+ u2)

)
v

(4)

where ν = (A,B,C,M) ∈
(
R3

+

)
× ]−1, 1[, with

A = a
K2 < 1, B = p

rK , C = cK
p and M = m

K << 1.

The singularities of the vector field Yν or equilibrium points of system (4) on Ω̃
are: P0 = (0, 0), P1 = (1, 0), which exists for all parameter values and PM = (M, 0)
exists in the first quadrant for M > 0. The equilibrium point PM = (M, 0) collapses
with P0 = (0, 0) for M = 0, and it is out of the first quadrant when M < 0.

Moreover, the positive equilibrium points lie on the curve v = u
C (1−u)(u−M),

(or v = u2

C (1− u) when M = 0), determined by the intersection of isoclines
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Cu2 − u+AC = 0 and v = (1− u)(u−M)(A+ u2),
The quadratic equation Cu2 − u + AC = 0 has two positive roots u4 and u5, if

and only if 1− 4AC2 > 0, independent of M .
Denoting W 2 = 1−4AC2, the equilibrium points P4 = (u4, v4) and P5 = (u5, v5)

have as coordinates:
u4 = 1−W

2C and v4 = (1−W )(2C−1+W )(1−W−2MC)
8C4 and

u5 = 1+W
2C and v5 = (1+W )(2C−1+W )(1−W−2MC)

8C4 .

Clearly, 0 < u4 < u5.

As 0 < A = 1−W 2

4C2 < 1 then 1−W 2 > 0 and 1−W 2 − 4C2 < 0.
Furthermore:
1. Assuming 1− 4C2A > 0, then:
P4 = (u4, v4) and P5 = (u5, v5), lie at the interior of the first quadrant, if and

only if, 0 ≤M < u4 < u5 < 1.
If u4 = M , then v4 = 0 and 1−W − 2CM = 0, coinciding (u4, v4) with (M, 0).
If u4 < M , then v4 < 0, 1 − W − 2CM = 0 and (u4, v4) lies in the fourth

quadrant.
If u5 = 1, then v5 = 0 and 1 + W − 2C = 0, (or A = 1−C

C ), collapsing (u5, v5)
with (1, 0).

If u5 > 1, then v5 < 0 and 1 +W − 2C > 0 (or A < 1−C
C ) and P4 is the unique

equilibrium point at the interior of Ω̃.
2. If 1 − 4C2A = 0, there exists a unique equilibrium point at the interior of

Ω̃, then P4 collapses with P5; then, P4 =
(

1
2C ,

(2C−1)(1−2CM)
8C4

)
lies at the first

quadrant, if and only if, C > 1
2 and C < 1

2M , for M > 0.

3. If 1− 4C2A < 0, there exist no equilibrium points at the interior of Ω̃.
In Figure 1 we present the bifurcation diagram for the positive equilibrium points,

depending of A, C and M fixed.

II

C

A
1

1

I

I

II

III

1A = 2

0
0

IV
A =

M(1­C)

1­C
C

C

IV

III 4C

A =

1

Figure 1. Bifurcation diagram of the positive equilibrium points,
depending of the parameters A and C. In region I no positive
equilibrium points exist; in region II, there exist two equilibrium
points (u4, v4) and (u5, v5), in region III, there exist a unique
equilibrium (u4, v4); in region IV, no positive equilibrium points
exist.

The Jacobian matrix associated to system (4) is given by:

DYη (u, v) =

(
Yη11(u, v) −u

B (1− 2Cu) v B
(
u− Cu2 −AC

) ) where
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Yη11(u, v) = −5u4 + 4 (1 +M)u3 − 3 (M +A)u2 + 2A (1 +M)u−MA− v.
The Jacobian matrix evaluated at the points P0, PM and P1 are:

DYη (0, 0) =

(
−MA 0

0 −ABC

)
DYη (M, 0) =

(
M (1−M)

(
M2 +A

)
−M

0 B
(
M − CM2 −AC

) )
DYη (1, 0) =

(
− (1 +A) (1−M) −1

0 B (1− C −AC)

)

3. Main results. For system (4) we have

Lemma 3.1. a) The set Γ̄ =
{

(u, v) ∈ Ω̄ / 0 ≤ u ≤ 1, 0 ≤ v
}
⊂ R+

0 × R+
0 is an

invariance region.
b) The solutions are bounded.
c) The equilibrium points lie on the curve v = u

C (1− u) (u−M).

Proof. a) If u = 0, then du
dτ = 0 and dv

dτ = −ABCv < 0 and the trajectories remain
over the v − axis.

If v = 0, then du
dτ = (1− u)(u−M)

(
u2 + A

)
u < 0, if u < M

and du
dτ = (1−u)(u−M)

(
u2 + A

)
u > 0 if u > M , then, the trajectories remain

over the u− axis.
If u = 1, then du

dτ = −vu < 0 and dv
dτ = B (1− C −AC ) v, which can be

positive or negative, but the trajectories point inside Γ̄.
b) By using the Poincaré compactification [30], through the change of variables

X = u
v and Y = 1

v , we have that dX
dτ = 1

v2

(
v dudτ − u

dv
dτ

)
and du

dτ = − 1
v2

dv
dτ , and it is

shown that the point (0,∞) is a saddle point.
c) As A+ u2 = u

C it is clearly obtained that v = u
C (1− u)(u−M).

3.1. The strong Allee effect. Considering M > 0 in system (4); we obtain the
following properties:

Lemma 3.2. a) For all parameter values there exist at Γ̄ the singularities P0 =
(0, 0), PM = (M, 0) and P1 = (1, 0).

b) If 1− 4C2A > 0, then singularities P4 = (u4, v4) and P5 = (u5, v5) exist at Γ̄.
c) If 1− 4C2A = 0, there exists a unique equilibrium point at the interior of Γ̄,

P4 =
(

1
2C ,

(2C−1)(1−2CM)
8C4

)
, if and only if, C > 1

2 and M < 1
2C .

d) If 1− 4C2A < 0, there exist no equilibrium points at the interior of Γ̄.

Proof. a) If v = 0, then (1− u) (u−M)
(
A+ u2

)
= 0 or u = 0.

b) As Cu2 − u + AC = 0, the equation has two different positive roots, if and
only if, 1− 4C2A > 0.

c) If 1− 4C2A = 0, then P4 collapses with P5 at Γ̄ and we get
v4 = 1

8C4 (2C − 1) (1− 2CM).

Moreover, 0 < v4, if and only if 2C > 1 > 2CM , this is, if and only if C > 1
2 and

M < 1
2C .

d) Trivial.

Remark 1. The analysis required to know whether singularities P4 = (u4, v4) and
P5 = (u5, v5) lie at Γ̄, will be shown below.
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Lemma 3.3. a) For all parameter values P0 is an attractor.
Also, assuming that W 2 = 1− 4C2A < 0, then
b) PM = (M, 0) is a saddle point and P1 = (1, 0) is a local attractor.
c) There exists a separatrix curve dividing the behavior of the trajectories (see

Figure 2).

Proof. a) The eigenvalues of the Jacobian matrix at P0 always have negative real
part.

b(i) From the Jacobian matrix at PM = (M, 0) we get
detDYη(M, 0) = BM (1−M)

(
M2 +A

) (
M − CM2 − CA

)
.

Assuming that M − CM2 − CA > 0, as 1 − 4C2A < 0, the contradiction
(1−2CM)2

4C2 < 0 is obtained. Thus, PM = (M, 0) is a saddle point.

When M −CM2 −CA = 0 and 1− 4C2A < 0, we obtain that (1− 2CM)2 < 0,
and therefore PM is a non-hyperbolic saddle point.

b(ii) From the Jacobian matrix at P1 we get
detDYη(1, 0) = − (1 +A) (1−M)B (1− C − CA).
Assuming that 1− C − CA > 0 and given that 1− 4C2A < 0, then the contra-

diction (1− 2C)2 < 0 is obtained. Therefore, detDYη(1, 0) > 0, and P1 = (1, 0) is
a local attractor since trDYη(1, 0) < 0.

c) The stable manifold W s (PM ) of the saddle point PM , determines a separatrix
curve, above which the trajectories have the point P0 as ω−limit, and those starting
below this separatrix go to P1.

 
 

0

0

u

(M, 0)(0, 0) (1, 0)

Figure 2. A = 0.5, B = 1.0, C = 0.8, and M = 0.05, the singu-
larities (1, 0) and (0, 0) are attractor points; the stable manifold
of (M, 0) determines a separatrix curve.

Lemma 3.4. Assuming that W 2 = 1− 4C2A = 0, then

a) The point P4 =
(

1
2C ,

(2C−1)(1−2CM)
8C4

)
is the unique singularity at the interior

of Γ̄, if and only if, 2C − 1 > 0 and 1− 2CM > 0 and,
i) it is a saddle-node attractor [3] , if and only if, 3− 4C − 4CM + 4C2M > 0.
ii) it is a saddle-node repellor , if and only if, 3− 4C − 4CM + 4C2M < 0.
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iii) it is a cusp point and system (4) has a Bogdanov-Takens bifurcation [32, 43,
44], if and only if, M = 4C−3

4C(C−1) and 1
2 << C < 3

4 or 3
2 << C.

If 1− 2CM = 0, the point P4 is a non hyperbolic saddle point and if 2C − 1 = 0
the point P4 is a a non hyperbolic local attractor.

b) The point P1 is local attractor.

Proof. a) We have that v4 = (2C−1)(1−2CM)
8C4 > 0 if and only if 2C − 1 > 0 and

1− 2CM > 0.
In this case, P1 and P0 are both local attractors and PM is a saddle point.
The Jacobian matrix at P4 is

DYη(u4, v4) =

 −(1 + 4AC2
) (

3− 4C − 4CM + 4C2M
)

16C4
− 1

2C
0 0

,

where detDYη(u4, v4) = 0
and

trDYη(u4, v4) = − (1+4C2A)((3−4C)−4C(1−C)M)

16C4 .
The sign of trDYη(u4, v4) depends on the sign of T = (3− 4C)− 4C (1− C)M .
i) If (3− 4C)− 4C (1− C)M > 0, then

(
1

2C , v4

)
is a saddle-node attractor

ii) if (3− 4C)− 4C (1− C)M < 0, then
(

1
2C , v4

)
is a saddle-node repellor

iii) Clearly, if (3− 4C) − 4C (1− C)M = 0, or 0 < M = 4C−3
4C(C−1) < 1, then,

(u4, v4) is a cusp point.
This inequality it is fulfilled if and only if 1

2 < C < 3
4 or 3

2 < C, but since M

must be small, then 1
2 << C < 3

4 or 3
2 << C.

On the other hand:
If 2C − 1 = 0, P4 coincides with P1 and it is a non hyperbolic local attractor.
If 1− 2CM = 0, P4 coincides with PM and it is a non hyperbolic saddle point.

b) As 1 − C − CA = − (2C−1)2

4C is negative for 2C − 1 6= 0, then P1 is a local
attractor.

Theorem 3.5. For the equilibrium points P4 and P5 we have that

a) P4 ∈ Γ̄ and P5 ∈ Γ̄ , if and only if A >
M (1− CM)

C
and A >

1− C
C

;

moreover, in this case P1 is an attractor and PM is a saddle point.

b) P4 ∈ Γ̄ and P5 /∈ Γ̄, if and only if,
1− C
C

> A >
M (1− CM)

C
; in this case

P1 and PM are saddle points.

c) P4 /∈ Γ̄ and P5 ∈ Γ̄ if and only if A <
M(1− CM)

C
and A >

1− C
C

; then,

PM is a repellor and P1 is an attractor.

Proof. a) The equilibrium points P4 and P5 belong to Γ̃ simultaneously, if and only
if,
M < u4 < u5 < 1 (and v4, v5 > 0), that is, if M < 1

2C (1−W ) < 1
2C (1+W ) < 1.

Since 0 < A = 1−W 2

4C2 < 1, then 1−W 2 > 0 and 1−W 2 − 4C2 < 0, this implies
that:

i) 2CM < 1−W and 1−W < 2C, this is, 1−W−2MC > 0 and 2C−1+W > 0,
ii) 2CM < 1+W and 1+W < 2C, this is, 1+W−2MC > 0 and 2C−1−W > 0.
Then,

v4 =
(1−W )

8C4
(2C − 1 +W ) (1−W − 2MC) and
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v5 =
(1 +W )

8C4
(2C − 1−W ) (1 +W − 2MC) are both positives.

From i) we have; 1− 2MC > W > 1− 2C
and from ii) we obtain;

2MC − 1 < W < 2C − 1.
Therefore,

1− 2MC > W > 2MC − 1 and 2C − 1 > W > 1− 2C,
that is,

|1− 2MC| > W
and

|2C − 1| > W ,
hence,

(1− 2MC)
2
> 1− 4AC2

and
(2C − 1)

2
> 1− 4AC2

that is,
CA−M + CM2 > 0 and C − 1 + CA > 0.

Therefore,

A >
M(1− CM)

C
and A >

1− C
C

.

Furthermore, looking at the corresponding Jacobian matrix we have that P1 is
an attractor and PM is a saddle point.

b) The equilibrium point P4 ∈ Γ̃ and P5 /∈ Γ̃ , if and only if,
M < u4 < 1 < u5, that is,

M <
1

2C
(1−W ) < 1 <

1

2C
(1 +W ),

this implies that
iii) 2CM < 1−W and 1−W < 2C, this is, 1−W−2MC > 0 and 2C−1+W > 0,
iv) 2CM < 1+W and 1+W > 2C, this is, 1+W−2MC > 0 and 2C−1−W < 0.
Then,

v4 =
(1−W )

8C4
(2C − 1 +W ) (1−W − 2MC) > 0 and

v5 =
(1 +W )

8C4
(2C − 1−W ) (1 +W − 2MC) < 0.

From iii) we have that:

1− 2MC > W > 1− 2C
from iv) we obtain that:

W > 2MC − 1 and W > 2C − 1.
Therefore,

|1− 2MC| > W and |1− 2C| < W ,
hence,

(1− 2MC)
2
> 1− 4AC2 and 1− 4AC2 > (1− 2C)

2
,

that is,
CA−M + CM2 > 0 and C − 1 + CA < 0.

Thus,

A >
M(1− CM)

C
and A <

1− C
C

.

From the respective Jacobian matrices we have that the singularities P1 and PM
are saddle points.
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c) If M − CM2 − CA > 0, then v4 < 0 and P4 /∈ Γ̃.

b) From a) P5 ∈ Γ̃, if and only if,
1− C
C

< A < 1
4C2 (see Figure 1).

Theorem 3.6. When the equilibrium point P5 ∈ Γ̄ is a saddle point and there exists
a new separatrix curve for the trajectories determined by the heteroclinic that joins
the singularities P5 with P1.

Proof. The Jacobian matrix at P5 is

DYη(u5, v5) =

(
Yη11(u5, v5) −u5

−BWv5 0

)
,

with detDYη(u5, v5) = −BWv5u5 < 0, hence P5 is a saddle point, independent of
the sign of the trDYη(u5, v5) = Yη11(u5, v5).

The stable manifold W s(P5) of P5 determines a separatrix curve which divides
the behavior of the trajectories, implying the existence of a trajectory that joins
the singularities P5 and P1.

Theorem 3.7. If singularity P4 belongs to Γ̃, then we have that:
a) P4 is an attractor point (see Figures 2 and 4), if and only if

(2C + 5 + 2MC)W − 5 + 4AC2 + 2C + 4MC2 + 8C2 < 0,
b) P4 is a repellor surrounded by a stable limit cycle (see Figures 3 and 5), if and

only if
(2C + 5 + 2MC)W − 5 + 4AC2 + 2C + 4MC2 + 8C2 > 0,

c) Assuming that P5 ∈ Γ̃ and P4 is a repellor, then the limit cycle disappears
when it intersects the stable manifold of P5 (see Figures 6 and 7).

Proof. i) If singularity P5 ∈ Γ̃ then u5 = 1
2C (1 +W ) < 1, and 1−C

C < A < 1
4C2 (see

Figure 1).
Then P1 = (1, 0) is a stable equilibrium point.

ii) If P5 /∈ Γ̃, then A < 1−C
C < 1

4C2 and P1 is a hyperbolic saddle point. Thus, it
appears the unstable manifold Wu(P1).

The Jacobian matrix at (u4, v4) is

DYη (u4, v4) =

(
Yη11(u4, v4) −u4

BWv4 0

)
,

As detDYη (u4, v4) = BWv4u4 > 0, then the nature of the equilibrium point
(u4, v4) depends on

trDYη(u4, v4) = Yη11(u4, v4)
= −5u4

4 + 4 (1 +M)u3
4 − 3 (M +A)u2

4 + 2A (1 +M)u4 −MA− v4

= 1
8

1
C4

(
(1−W )

2 (−W 2 + (2C + 5 + 2MC)W − 4 + 2C + 4MC2 + 8C2
))

= 1
8

1
C4

(
(1−W )

2 (
(2C + 5 + 2MC)W − 5 + 4AC2 + 2C + 4MC2 + 8C2

))
and

a) P4 is an attractor, if and only if,
(2C + 5 + 2MC)W − 5 + 4AC2 + 2C + 4MC2 + 8C2 < 0,

b) P4 is a repellor point, if and only if ,
(2C + 5 + 2MC)W − 5 + 4AC2 + 2C + 4MC2 + 8C2 > 0.

c) Assuming that P5 ∈ Γ̃ and P4 is a repellor, we have that the limit cycle
disappears when it intersects the stable manifold of P5 (see Figures 7 and 8).

Theorem 3.8. The equilibrium Point P4 is a first order weak (fine) focus [7], if
and only if,
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Figure 3. For A = .7, B = 1, C = 0.62 and M = 0.05, the points
(1, 0), (u4, v4) and (0, 0) are attractors. The positive singularity
(u5, v5) is a saddle point.
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Figure 4. For A = .62, B = 1, C = 0.62 and M = 0.05, the
points (0, 0) and (1, 0) are attractor equilibrium points. The point
(u4, v4) is a repellor surrounded by a limit cycle and (u5, v5) is a
saddle point.
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Figure 5. For A = .88, B = 1, C = 0.5 and M = 0.05, the
unique positive singularity (u4, v4) and (0, 0) are attractors; (1, 0)
is a saddle point.
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Figure 6. For A = .8, B = 1, C = 0.5 and M = 0.05, the
singularity (1, 0) is saddle point, the unique positive singularity
(u4, v4) is a repellor surrounded by a unique limit cycle.
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Figure 7. For A = .37, B = 1, C = 0.75 and M = 0.05,
the points (0, 0) and (1, 0) are attractors; (u4, v4) is repellor and
(u5, v5) is a saddle point. There exist heteroclinic curves joining
(u4, v4) with (1, 0), (u5, v5) with (1, 0) and (u4, v4) with (u5, v5);
there exists no limit cycle.
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Figure 8. For A = .3, B = 1, C = 0.8 and M = 0.05, the points
(0, 0) and (1, 0) are attractors; (u4, v4) is a repellor and (u5, v5) is
a saddle point. There exist heteroclinic curves joining (u4, v4) with
(1, 0), (u5, v5) with (1, 0) and (u5, v5) with (M, 0).
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C
(
4C2A+ 4C2 − 1

)
M2 +

(
−12C + 4C2 + 20C2A− 5 + 16C3 + 16C3A

)
M +

24C2A+ 15CA− 20C − 10 + 16C3 + 8C2 + 4C3A2 + 20C3A = 0.

Proof. P4 is a weak focus, if and only if,
(2C + 5 + 2MC)W − 5 + 4AC2 + 2C + 4MC2 + 8C2 = 0 or
C
(
4C2A+ 4C2 − 1

)
M2 +

(
−12C + 4C2 + 20C2A− 5 + 16C3 + 16C3A

)
M +

24C2A+ 15CA− 20C − 10 + 16C3 + 8C2 + 4C3A2 + 20C3A = 0.
If P5 ∈ Γ̃, the above results hold for a subset of trajectories inside of the re-

gion defined by the separatrix curve which is determined by the horizontal stable
manifold W s(P5) and under the separatrix curve determined by the stable manifold
W s(PM ).

Then, depending on the the initial conditions, the trajectories have as ω− limit
either the point P4, or a limit cycle which surrounds it, or the point P1 (see Figures
3 and 4).

If P5 /∈ Γ̃, the system behavior depends on the location of W s(PM ) and Wu(P1).
The above results hold for vs ≥ vu that is, M << u4 < 1 and the nature of (u4, v4)
depends on the sign of its trace (see Figures 5 and 6).

In order to determine the order of weakness, we calculate the Liapunov quantities
[7], for a normal form [7] of system (4), translating the point (u4, v4) = (H,L) to
origin (0, 0) [22, 24, 31] by means of the equalities u = U +H and v = V + L.

We recall that,
u4 = H = 1

2C (1−W ) with W 2 = 1 − 4AC2, with H satisfying the equation

H −C(A+H2) = 0 and L = (1−H)(H −M)(A+H2), we obtain the system Zν :
dU

dτ
=
(

(1− (U +H))((U +H)−M)(A+ (U +H)
2
)− (V + L)

)
(U +H)

dV

dτ
= B

(
(U +H)− C(A+ (U +H)

2
)
)

(V + L)

The Jacobian matrix for vector field Zν is

DZν(0, 0) =

( (
−4H3 + 3 (1 +M)H2 − 2 (M +A)H + (1 +M)A

)
H −H

BWL 0

)
with detDZν(0, 0) = HBWL > 0 and the first Liapunov quantity is
η1 = trDZν(0, 0) = H ((M − 2H + 1)A−H ((2− 3H)M +H (4H − 3))),

when, trDZν(0, 0) = 0, we have A = H((2−3H)M−H(3−4H))
M−2H+1 with

i) M − 2H + 1 < 0 and (2− 3H)M − H (3− 4H) < 0, implying M < 2H − 1

and M < H(3−4H)
2−3H or M < 2H − 1 and M > H(3−4H)

3H−2

ii) M − 2H + 1 > 0 and (2− 3H)M −H (3− 4H) > 0, implying M > H(3−4H)
2−3H .

H(3−4H)
2−3H − (2H − 1) = 2 (1−H)2

2−3H

Let F =
√

detDZν(0, 0) =
√
HBWL. Using the matrix of Jordan [3]

J =

(
0 −F
F 0

)
and the respective matrix of change of basis

N =

(
Z11− α −F

Z21 0

)
.

The change of variables is given by x = H
F 2V , and y = − 1

F
U , making

W = A−H2

A+H2 , for A > H2 and after of tedious algebraic calculus we obtain
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Z̄ν :



dx

dτ
= −Fy − BH2

A+H2
Ly2 − FBA−H

2

A+H2
xy − BH2

A+H2
F 2xy2

dy

dτ
= Fx− F

(
−10H3 + 6MH2 + 6H2 − 3HM − 3HA+A+MA

)
y2−

F 2

H
xy + F 2

(
4H −M − 10H2 + 4HM −A

)
y3−

F 3 (1− 5H +M) y4 − F 4y5

rescaling the time by T = Fτ it becomes

Z̆ν :



dx

dT
= −y − 1

F

BH2

A+H2
Ly2 −BA−H

2

A+H2
xy − BH2

A+H2
Fxy2

dy

dT
= x−

(
−10H3 + 6MH2 + 6H2 − 3HM − 3HA+A+MA

)
y2−

F

H
xy + F

(
4H −M − 10H2 + 4HM −A

)
y3−

F 2 (1− 5H +M) y4 − F 3y5

By using the Mathematica package [40] we obtain the second Liapunov quantity:
η2 = − F

A−H2 f1 (A,H,M), where

f1 (A,H,M) = − (M + 1)A2 +
(
H2 (9 (M + 1)− 26H)

)
A+ 6H4

− 6H3M (1−H) .

Replacing A = H((2−3H)M−H(3−4H))
M−2H+1 , it is obtained,

f1 (H,M) = 2H2

(2H−M−1)2
f2 (H,M) with

f2 (H,M) = −
(
15H2 − 12H + 2

)
M3 − (1− 4H)

(
21H2 − 16H + 2

)
M2−

H
(
162H3 − 208H2 + 85H − 12

)
M +H2

(
104H3 − 162H2 + 84H − 15

) ,

f1 (A,H,M) < 0 is incompatible with the conditions
η1 = (M − 2H + 1)A−H ((2− 3H)M +H (4H − 3)) = 0 and A > H2.
Then, η2 can not change the sign; so P4 is a first order weak (fine) focus.

Comparing with the results obtained in [22], we can conclude that the inclusion of
the Allee effect in a Gause type predator-prey model with non-monotonic functional
response decreases the number of limit cycles. But it is not a general property since
the Gause type predator-prey model with sigmoid functional response considering
the Allee effect increases the number of limit cycles [24, 31].

Theorem 3.9. Assume that 1−C
C > A > M(1−CM)

C , then P1 and PM are saddle
points. Let W s (PM ) and Wu (P1) be the stable and unstable manifolds of PM and
P1 respectively, then there exists a subset of parameter values for which W s (PM ) =
Wu (P1), and an heteroclinic is originated, joining the saddle points P1 and PM ,

and an invariant subregion Γ̆ ⊂ Γ̃ is determined.

Proof. If 1−C
C > A > M(1−CM)

C , then P1 and PM are saddle points and P4 is the

unique point at the subregion Γ̆ = {(u, v) ∈ Γ̃/ M < u < 1, 0 < v}.
Let W s (PM ), Wu (P1) be the stable and unstable manifolds of PM and P1, re-

spectively. It is clear that the α-limit of W s (PM ) and ω-limit of Wu (P1) are not at
infinity on the direction of v−axis and under this conditions the ω-limit of Wu (P1)
are not at u − axis; then there exist points (u∗, vs) ∈ W s (PM ) and (u∗, vu) ∈
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Wu (P1), with vs and vu dependent on parameters, that is, vs = s(A,B,C, M) and
vu = u(A,B,C, M).

It can be seen that, if M < u∗ << 1, then vs < vu and if M << u∗ < 1, then
vs > vu. Since the vector field Yη is continuous with respect to the parameters,
then the stable manifold W s (PM ) intersects the unstable manifold Wu (P1).

Then, there exist (u∗e, v
∗
e) ∈ Γ̃, such that v∗s = v∗u and the equation s(A,B,C,M)

= u(A,B,C,M) defines a surface in the parameter space
(
R3

+

)
× ]−1, 1[, for which

the heteroclinic curve exists and it has a bounded invariant subregion Γ̆ ⊂ Γ̃, whose
frontier is determined by the subinterval [M, 1] and the heteroclinic (Figure 9).
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Figure 9. A = 0.635, B = 1, C = 0.5 and M = 0.05, the
heteroclinic curve joining the singularities (1, 0) and (M, 0) is
shown.

Hereafter, let (u∗, vs) ∈ W s (PM ) and (u∗, vu) ∈ Wu (P1), where vs and vu are
functions of the parameters A,B,C and M .

Theorem 3.10. Assuming that vs < vu and M < u4 << 1, then the equilibrium
point P4 is a repellor; the equilibrium point P0 is a global attractor, and there exists
a heteroclinic curve joining them.

Proof. If vs < vu, then the stable manifold W s (PM ) lies below the unstable mani-
fold Wu (P1). For uniqueness of solutions, the trajectories from the point (u4 , v4),
can not intersect Wu (P1) and since (M, 0) and (1, 0) are saddle points, by Poincaré-
Bendixon Theorem they must have the point (0, 0) or a limit cycle as ω − limit,
when trDYη (ue , ve ) > 0.

On the other hand, the limit cycles that appear by Hopf bifurcation increases
until they disappear when the heteroclinic curve joining the points (M, 0) and (1, 0)
is broken. Then there exists a subset of the parameter space for which the point
(0, 0) is globally asymptotically stable.
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Moreover, there exists one trajectory originated on (u4 , v4) and ending on (0, 0),
forming a new heteroclinic curve (Figure 9); moreover, two heteroclinic curves join-
ing the equilibrium points (M, 0) with (1, 0) and (u4 , v4) with (M, 0) can exist for
a determined parameter subset (Figure 10).
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Figure 10. A = 0.4, B = 1, C = 0.55 and M = 0.05. The sin-
gularity (0, 0) is a global attractor and there exist four heteroclinic
curves joining (u4, v4) with (0, 0), (u4, v4) with (M, 0), (1, 0) with
(0, 0) and (M, 0) with (1, 0).

3.2. A special case of weak Allee effect. When M = 0 in system (4) (that is,
m = 0 in system (3) we have the following system:

Yν :

{
du
dτ =

(
(1− u) (A+ u2)u− v

)
u

dv
dτ = B

(
u− C(A+ u2

)
v

(5)

For vector field Yν or system (5) we have a similar result for the model with
strong Allee effect that we summarize in the following :

Theorem 3.11. a) For all parameter values at Γ̄ there exist the singularities P0 =
(0, 0) and P1 = (1, 0).

b) The origin is a saddle-node point having a separatrix curve determined by the
stable manifold W s (P0) and it is an attractor for any trajectory laying above the
separatrix.

c) If 1−4C2A < 0, there exist no equilibrium points at the interior of Γ̄, whereas
P0 = (0, 0) and P1 = (1, 0) are both local attractors.

e) If 1− 4C2A = 0, there exists a unique equilibrium point at the interior of Γ̄
P4 =

(
1

2C ,
2C−1
8C4

)
if and only if, C > 1

2 and
1) is a saddle-node attractor, if 3− 4C > 0.
2) is a saddle-node repellor, if 3− 4C < 0.
3) the point P4 = (u4, v4) is a cusp point [32] only for C = 3

4 and
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DYv
(

2
3 ,

16
81

)
=

(
0 − 2

3
0 0

)
f) If 1 − 4C2A > 0 then singularities P4 = (u4, v4) and P5 = (u5, v5) exist at

Γ̄.
1) The equilibrium points P4 and P5 belong to Γ̄ simultaneously if and only if

A >
1− C
C

; moreover, in this case P1 is an attractor.

2) The equilibrium point P4 ∈ Γ̄ and P5 /∈ Γ̄, if and only if,
1− C
C

> A; in this

case P1 is a saddle point.
g) Assuming that P4 ∈ Γ̄ , then
1) P4 is an attractor point if and only if,
4C3A2 + C

(
24C + 15 + 20C2

)
A+ 2 (2C + 1)

(
4C2 − 5

)
> 0,

2) P4 is repellor surrounded by a stable limit cycle if and only if,
4C3A2 + C

(
24C + 15 + 20C2

)
A+ 2 (2C + 1)

(
4C2 − 5

)
< 0,

3) P4 is an order one weak focus if and only if,
4C3A2 + C

(
24C + 15 + 20C2

)
A+ 2 (2C + 1)

(
4C2 − 5

)
= 0,

This equality is fulfilled if A < 1 and 40C3 + 32C2 − 5C − 10 > 0.
h) Assume that 1−C

C > A. Let W s (P0) and Wu (P1) be the stable and unstable
manifolds of P0 and P1 respectively, then there exists a subset of parameter values
for which W s (P0) = Wu (P1), and a heteroclinic curve is originated which joins

the saddle points P1 and P0 , and an invariant subregion Γ̆ ⊂ Γ̄ is determined.
i) Let (u∗, vs) ∈W s (P0) and (u∗, vu) ∈Wu (P1), where vs and vu are functions

of the parameters A,B and C. Assuming that vs < vu and 0 < u4 << 1, we
have that the equilibrium point P4 is a repellor, the equilibrium point P0 is a global
attractor, and there exists a heteroclinic curve joining them.

Proof. e1) Through the substitution u → z + 2
3 , v → w + 16

81 [20] and by time

rescaling, we can translate this point to the origin obtaining the vector field Z̄ . In
order to prove that the origin of the vector field Z̄ is a cusp, it is sufficient to show
that the Takens normal form of this singularity has codimension two, since it is the
unique topological type in this codimension.

g3) In the case when
4C3A2 + C

(
24C + 15 + 20C2

)
A+ 2 (2C + 1)

(
4C2 − 5

)
= 0.

The first Liapunov quantities are
trDZν(0, 0) =

(
−4H3 + 3H2 − 2AH +A

)
H = 0,

and
η2 = −Ef2(A,H)

A−H2 .
with

f2 (A,H) = −A2 −H2 (26H − 9)A+ 6H4.
The conditions for the existence of a limit cycle are
−A2 −H2 (26H − 9)A+ 6H4 > 0 and T = −4H3 + 3H2 − 2AH +A > 0,

and A > H2, are not compatibles, then (u4, v4) is an order one weak (fine) focus
[7].

4. Concluding remarks. In this work we have analyzed the dynamics of a system,
representing the ecological interaction between one prey population subjected to
Allee effect and its specialist predator, which exhibits a non-monotonic functional
response. The analysis was carried out on a simpler, topologically equivalent system.
Our main purpose is to understand how an increasingly recognized ecological process
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(Allee effect) affects the population dynamics in interaction with other plausible
non-linearities, here the inhibited functional response.

If a non-monotonic functional response is considered for the standard Gause
model, there exist up to two interior equilibrium points [32, 42, 44] and there ex-
ists a subset of parameter values for which a unique positive equilibrium point is
surrounded by two limit cycles [22].

The resulting dynamics, when the two modifications described above are added
simultaneously to the classical Gause model reveals that long-term behavior includes
coexistence, extinction of predators or extinction of both prey and predators, de-
pending on parameter values and initial conditions. For system (3) the origin (0, 0)
is a local attractor equilibrium point for all parameter values; orbits starting from
above the threshold curve determined by the stable manifold W s (m, 0) of the equi-
librium point (m, 0) have (0, 0) as its ω−limit, implying the possibility of extinction
of both populations. Below the separatrix, the invariance region Γ can contain up
to two positive equilibria or a limit cycle surrounding a positive equilibrium point.

When two equilibrium points (x1, y1) and (x2, y2) exist within Γ where x1 <
x2, the point (x2, y2) is a saddle point and (K, 0) is a local attractor. In this
case, (x1, y1) can be an attractor point or a repellor surrounded by a stable limit
cycle. Therefore, we have demonstrated that for some parameter values the system
presents three simultaneous attractors: the point O = (0, 0), the point (K, 0), and
either the point (x1, y1) or its associated periodic attractor.

If (x2, y2) ∈ Γ, and the stable manifold W s (m, 0) is above the unstable mani-
fold Wu (K, 0), both populations coexist if initial conditions are near (K, 0), but if
population sizes are under the separatrix curve determined by W s(x2, y2) the prey
tends to reach its carrying capacity and predators go to extinction.

For some parameter values, there exists a unique singularity (x1, y1) at the inte-
rior of the first quadrant, in which case (x2, y2) /∈ Γ and (K, 0) is a saddle point.
The point (x1, y1) can be a repellor surrounded by a limit cycle, whose amplitude
can be large enough as to touch the heteroclinic curve formed by the intersection
of the stable manifold W s (m, 0) and the unstable manifold Wu (K, 0). When this
heteroclinic breaks, we get one of two results: the stable manifold W s (m, 0) can
rest below the unstable manifold Wu (K, 0) and a subregion of invariance appears;
otherwise W s (m, 0) can rest above Wu (K, 0) and all trajectories have the point
(0, 0) as their ω − limit, that is, the singularity (0, 0) is a global attractor.

If there exists no equilibrium point at the interior of the first quadrant, i.e. if
p2−4ac2 < 0, predators always tend to extinction, whereas the prey can either go to
extinction since the origin is an attractor or attain its maximum size K, depending
on which side of the separatrix curve initial conditions are.

Based on previous works, for instance in [22, 32, 42, 44], it is possible to pos-
tulate that the dynamics of system (3) is strongly influenced by Allee effect which
determines the existence of the separatrix and the attracting nature of the origin
implying the extinction of both populations, and by the non-monotonic functional
response which determines the existence of two positive equilibrium points having
a behaviour that is similar to those having no Allee effect.

Furthermore, the uniqueness of limit cycles in our system of interest is proved
but this limit cycle can disappear when parameters vary and an heteroclinic curve
joining the singularities (m, 0) and (K, 0) is formed.

However, we cannot assure that the Allee effect increases or diminishes the num-
ber of limit cycles since a different situation respect to our results has been observed
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when a Gause type predator-prey model with a sigmoid functional response and the
Allee effect on prey population is analyzed [24, 31]. For this system, the existence
of two limit cycles is showed, differencing with the model without Allee effect for
which the uniqueness of limit cycle is proved.

Then, for a general theory, models must be studied using other mathematical
forms to express the Allee effect [22], or else, assume predators have an alternative
food.

Accepting that ordinary differential equations (ODE) are a good tool to predict
the behavior of species interactions, parodying Coleman [10], the problem is: Find
a predator–prey or other interacting system in nature, or construct one in the
laboratory, having three attracting sets for the same set of the parameter values.

This means that for a fixed set of parameters and different populations sizes of
prey affected by the Allee effect and predators consuming them to a non-monotonic
rate, it must occur: i) both populations can go to extinction, ii) the population of
predators disappear and the prey goes to their maximum carrying capacity, or iii)
the populations sizes oscillate around a fixed point.
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