Modeling and simulation of some cell dispersion problems by a nonparametric method

  • Received: 01 February 2010 Accepted: 29 June 2018 Published: 01 April 2011
  • MSC : Primary: 92C17, 82C31, 60H10; Secondary: 60K40, 65C20, 62G07.

  • Starting from the classical descriptions of cell motion we propose some ways to enhance the realism of modeling and to account for interesting features like allowing for a random switching between biased and unbiased motion or avoiding a set of obstacles. For this complex behavior of the cell population we propose new models and also provide a way to numerically assess the macroscopic densities of interest upon using a nonparametric estimation technique. Up to our knowledge, this is the only method able to numerically handle the entire complexity of such settings.

    Citation: Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method[J]. Mathematical Biosciences and Engineering, 2011, 8(2): 263-277. doi: 10.3934/mbe.2011.8.263

    Related Papers:

    [1] Ana Isabel Muñoz, J. Ignacio Tello . On a mathematical model of bone marrow metastatic niche. Mathematical Biosciences and Engineering, 2017, 14(1): 289-304. doi: 10.3934/mbe.2017019
    [2] Tianyuan Xu, Shanming Ji, Chunhua Jin, Ming Mei, Jingxue Yin . EARLY AND LATE STAGE PROFILES FOR A CHEMOTAXIS MODEL WITH DENSITY-DEPENDENT JUMP PROBABILITY. Mathematical Biosciences and Engineering, 2018, 15(6): 1345-1385. doi: 10.3934/mbe.2018062
    [3] Dawid Czapla, Sander C. Hille, Katarzyna Horbacz, Hanna Wojewódka-Ściążko . Continuous dependence of an invariant measure on the jump rate of a piecewise-deterministic Markov process. Mathematical Biosciences and Engineering, 2020, 17(2): 1059-1073. doi: 10.3934/mbe.2020056
    [4] Abdulhamed Alsisi, Raluca Eftimie, Dumitru Trucu . Non-local multiscale approach for the impact of go or grow hypothesis on tumour-viruses interactions. Mathematical Biosciences and Engineering, 2021, 18(5): 5252-5284. doi: 10.3934/mbe.2021267
    [5] Katarzyna Pichór, Ryszard Rudnicki . Stochastic models of population growth. Mathematical Biosciences and Engineering, 2025, 22(1): 1-22. doi: 10.3934/mbe.2025001
    [6] Luis F. Gordillo . Optimal sterile insect release for area-wide integrated pest management in a density regulated pest population. Mathematical Biosciences and Engineering, 2014, 11(3): 511-521. doi: 10.3934/mbe.2014.11.511
    [7] Xuan Zhang, Huiqin Jin, Zhuoqin Yang, Jinzhi Lei . Effects of elongation delay in transcription dynamics. Mathematical Biosciences and Engineering, 2014, 11(6): 1431-1448. doi: 10.3934/mbe.2014.11.1431
    [8] Virginia González-Vélez, Amparo Gil, Iván Quesada . Minimal state models for ionic channels involved in glucagon secretion. Mathematical Biosciences and Engineering, 2010, 7(4): 793-807. doi: 10.3934/mbe.2010.7.793
    [9] Nikolai Leonenko, Enrica Pirozzi . The time-changed stochastic approach and fractionally integrated processes to model the actin-myosin interaction and dwell times. Mathematical Biosciences and Engineering, 2025, 22(4): 1019-1054. doi: 10.3934/mbe.2025037
    [10] Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl . Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences and Engineering, 2017, 14(3): 625-653. doi: 10.3934/mbe.2017036
  • Starting from the classical descriptions of cell motion we propose some ways to enhance the realism of modeling and to account for interesting features like allowing for a random switching between biased and unbiased motion or avoiding a set of obstacles. For this complex behavior of the cell population we propose new models and also provide a way to numerically assess the macroscopic densities of interest upon using a nonparametric estimation technique. Up to our knowledge, this is the only method able to numerically handle the entire complexity of such settings.


  • This article has been cited by:

    1. Christian Engwer, Thomas Hillen, Markus Knappitsch, Christina Surulescu, Glioma follow white matter tracts: a multiscale DTI-based model, 2015, 71, 0303-6812, 551, 10.1007/s00285-014-0822-7
    2. Thomas Lorenz, Christina Surulescu, On a class of multiscale cancer cell migration models: Well-posedness in less regular function spaces, 2014, 24, 0218-2025, 2383, 10.1142/S0218202514500249
    3. Gülnihal Meral, Christian Stinner, Christina Surulescu, On a multiscale model involving cell contractivity and its effects on tumor invasion, 2015, 20, 1553-524X, 189, 10.3934/dcdsb.2015.20.189
    4. Christina Surulescu, Nicolae Surulescu, 2013, Chapter 9, 978-3-319-03079-1, 269, 10.1007/978-3-319-03080-7_9
    5. Sandesh Hiremath, Christina Surulescu, A stochastic multiscale model for acid mediated cancer invasion, 2015, 22, 14681218, 176, 10.1016/j.nonrwa.2014.08.008
    6. JAN KELKEL, CHRISTINA SURULESCU, A MULTISCALE APPROACH TO CELL MIGRATION IN TISSUE NETWORKS, 2012, 22, 0218-2025, 1150017, 10.1142/S0218202511500175
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2658) PDF downloads(417) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog