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Abstract. Starting from the classical descriptions of cell motion we propose

some ways to enhance the realism of modeling and to account for interesting
features like allowing for a random switching between biased and unbiased

motion or avoiding a set of obstacles. For this complex behavior of the cell

population we propose new models and also provide a way to numerically assess
the macroscopic densities of interest upon using a nonparametric estimation

technique. Up to our knowledge, this is the only method able to numerically

handle the entire complexity of such settings.

1. Introduction. Simple biological organisms like bacteria use a random walk
strategy to search for favorable signals in their environment; they appropriately
biase their movement in order to adapt to such chemical cues. For instance, flag-
ellated bacteria move through a so-called velocity jump process, i.e. a sequence of
rather straight runs interrupted by reorientations allowing to choose a new velocity
(tumbles). The changes are usually considered to be generated by a Poisson process
whose intensity is given by the turning rate of the particle and the new velocity
is dictated by some turning kernel providing the probability of the cell leaving the
previous velocity regime.

In the context of bacterial movement one would like to understand e.g., the basic
mechanisms underlying microbial behavior, since this could provide approaches for
prospective innovations in biotechnology. Thus, a quantitative characterization of
bacterial migration could be expedient for assessing microbial processes such as
nitrogen fixation, infection spread or biofilm formation, e.g., on medical implants
or submersed surfaces. Thinking of more evolved cells of particular relevance would
be for instance the migration of endothelial cells in the process of wound healing
or that of cancer cells penetrating the surrounding tissue. All these issues can be
approached by assessing the evolution of the corresponding macroscopic cell density
and this makes its characterization such an interesting problem. For this quantity an
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integro-differential transport equation can be deduced, the diffusion limit of which
has been shown to be under certain conditions the classical Patlak-Keller-Segel
model for chemotaxis [17], [26], [5].

The transport model has been derived for a one-particle distribution function [30],
however the use of transport equations for populations is not always unproblematic,
as it was discussed e.g. in [15]. In the case of correlated movements of individuals
in the population the deduction of transport equations from stochastic processes
has still to be rigorously carried out. It has been attempted to handle the transport
equation for the velocity jump model of bacterial movement with the aid of the
method of moments, however the resulting system was only closed in some special
cases where some rather restrictive assumptions on the turning kernel and on the
higher order moments were satisfied [6], [12], [17], [25]. The diffusion based models
have been polemized, too; bacterial motion normally obeys a velocity jump process
and not a Brownian motion and the parameters of the model (like diffusion constants
and chemotactic sensitivity) are not directly related to the individual movement
pattern of the species [15].

This motivated us to look for other methods allowing for a description of bacterial
motion without the aid of (reaction-diffusion-) transport equations. Our nonpara-
metric approach proposed in [31] avoids the use of differential equations for the cell
density; instead, we simulate bacteria trajectories which we employ to nonparamet-
rically estimate the cell density upon applying the theory developed in [28]. For
instance, we propose in the present work a model for bacterial motion through a
heterogeneous medium, an issue which would be very difficult to address in the
framework of partial differential equations. For a simplified setting we also assess
the performance of the nonparametric method in comparison with solving a corre-
sponding PDE by applying a method of moments.

In the next section we shortly recall the classical models for cell dispersal, along
with some comments on the PDE approach. We briefly present in Section 3 the
nonparametric method and illustrate it on the models in Section 4, in which we pro-
pose some equation-free descriptions of bacterial motion relying on velocity jump
processes, along with some enhancements of the Ornstein-Uhlenbeck models for cell
dispersal. We also apply the nonparametric method in order to appraise the behav-
ior of the macroscopic cell density predicted by our models. Numerical simulations
are performed in Section 5 via a method of moments for the forward Kolmogorov
equation which has been shown to approximate under certain assumptions and in
the macroscopic limit the corresponding transport partial integro-differential equa-
tion for the cell density. The comparison of the results with those obtained via the
nonparametric procedure leads to the discussion in Section 6.

2. Classical approaches to cell dispersal. The current models for describing
cell dispersal rely on some classes of random processes either giving a geometrical
description of the motion or applying stochastic increments to the cell velocity rather
than to its position in space [25]. The former build the class of so-called velocity
jump (VJ) models, while in the latter the particle velocity obeys a multivariate
Ornstein-Uhlenbeck (OU) process.

The PDE approach to modeling cell population density is one of the most fre-
quently used; it aims to deduce and analyze the PDE satisfied by the population
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cell density and to use the computational power of well established numerical meth-
ods for solving the corresponding equations in order to assess the behavior of the
population of interest.

Let us consider a cell population in a 2N -dimensional phase space (N = 1, 2, 3).
Further, let f(t,x,v) be the cell density function depending on (x,v), where x ∈ RN
is the position of a cell and v ∈ RN is its velocity. Thus f(t,x,v) dxdv is the number
of cells at time t with position between x and x + dx and velocity between v and
v + dv. Let V ⊂ RN denote the set of velocities. Then the macroscopic density of
individuals at the position x ∈ RN and at the time t is given by

n(t,x) =

∫
V

f(t,x,v)dv. (1)

2.1. OU type models. The OU based models can be written in the general form

dx̃t = b(t, x̃t)dt+ σ(t, x̃t)dBt, t ≥ 0 (2)

where x̃t ∈ R2N is the multivariate stochastic process with components xt and vt,
whereas Bt is a multivariate Brownian motion in R2N . In this stochastic differential
equation the drift b ∈ R2N and the diffusion matrix σ ∈ R2N×2N are most often of
the form

b =

(
vt

χ
ρ (m− vt)

)
, σ =

(
0 0
0 1

ρΣ

)
, with Σ ∈ RN×N , m ∈ RN , (3)

where χ/ρ denotes the rate of mean reverting for the velocity process v and is
related to the chemotactic sensitivity. m and Σ are constant matrices or -in more
realistic settings- they are themselves stochastic processes or involve some. If Σ
is constant, then the involved variables are Gaussian distributed, which is often
not realistic, see e.g. [7], [34], [35]. However, this problem can be overcome upon
allowing Σ to be a stochastic process of the OU type comprising several stochastic
effects in the biological system. Details will be provided in Section 4.

When the coefficients in (2) are sufficiently smooth it is well known that the
evolution of the density is described by the forward Kolmogorov equation (FKE)

∂f

∂t
= −

2N∑
i=1

∂

∂x̃i
(bi(t, x̃)f) +

1

2

2N∑
i,j,k=1

∂2

∂x̃i∂x̃j
(σik(t, x̃)σjk(t, x̃)f), (4)

where x̃ = (x,v)′ ∈ R2N , b = (bi)1≤i≤2N , σ = (σij)1≤i,j≤2N with bi and σij

deterministic functions. For the case with nonsmooth coefficients as in some of our
models (see Section 4) it would be technically quite elaborate to deal with this PDE
approach.

2.2. VJ type models. In the simplest velocity jump case, i.e. in the absence of
cell-cell interactions and when no external stimuli are present, the density f satisfies
a Boltzmann like partial integro-differential equation [25] with the integral operator
characterizing the turning events:

∂tf(t,x,v) + v · ∇f(t,x,v) = −λf(t,x,v) + λ

∫
V

K(v,v′)f(t,x,v′)dv′. (5)

K(v,v′) denotes the turning kernel and gives the probability of a velocity jump
from the v′ to the v regime. The velocity changes are modelled with a Poisson
process with intensity λ and thus the mean running time is τ = 1/λ.
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A kinetic equation for the phase space cell density of the type of (5) has been
introduced by Alt [1] and further studied in [25]. Handling the above integro-
differential equations numerically is a very difficult task, especially when more com-
plex turning kernels are involved. Therefore, macroscopic limits have to be deduced,
eventually leading to parabolic or hyperbolic PDEs which can be treated more eas-
ily. In [5] such a Boltzmann like equation was coupled to a reaction-diffusion one for
the external signal and several conditions have been imposed on the turning opera-
tor K in order to derive as a scaling limit the classical Patlak-Keller-Segel equations
for chemotaxis. Another deduction, based on parabolic scaling, has been given in
[17], [26]. However, for a rigorous deduction one needs to impose rather restrictive
conditions on the turning kernels. For instance, an unrealistic assumption is∫

V

K(v,v′)dv′ = 1, (6)

which is not fulfilled by many reorientation kernels, among others the one based on
the von Mises distribution proposed in [6] upon relying on experimental evidence.
This is the case, too, for all mixture-based kernels like that to be used for one of
our models in Section 4.

There is obviously a need to improve the classical models in order to allow cap-
turing important experimentally observed features. One way of doing this is to
consider more flexible turning kernels. However, this leads to a substantial increase
in the complexity of the probabilistic settings, rendering the treatment of the result-
ing models very difficult when trying to use the classical PDE approach. Therefore,
alternative methods are in demand, which should enable handling the new settings.
The nonparametric approach presented in Section 3 is such a method: it is based
on statistical estimation techniques and features a great versatility, since it actually
only uses the primary description of the phenomena to be modelled.

3. Nonparametric estimation of the population density function. The ker-
nel density estimation technique is the most widely used method when estimating
complex density functions, owing to its flexibility and the plethora of theoretical
results establishing its consistency for various rates of convergence [28], [29]. This
method uses computing power to allow a very effective handling of complicated
structures. When the assumption of Gaussianity for the densities of interest is not
appropriate, then a certain type of parametric density might be more suitable for
describing the data. But other times it is more desirable to simply let the data
speak for themselves, i.e. to look for an estimator of the population density, un-
constrained (or as loosely as possible) by an apriori form. This is in fact the aim
of nonparametric density estimators. In the following we apply this method for
independent simulations, however it also works under fairly general conditions for
dependent data, see e.g., [27], [36].

Starting from one of the models (velocity jump or OU processes) for cell move-
ment, we simulate S independent bacterial trajectories on the interval of interest
[0, T ] and we use the data sets obtained in this way to estimate the cell popula-
tion density at an arbitrary moment of time t ∈ [0, T ]. More details on how these
simulations are performed are provided at the end of this section.
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The nonparametric estimators for the cell population density n at some moment
t are defined by (see [28]):

n̂H(t,x) =
1

S detH

S∑
i=1

K(H−1(x−Xi)), x ∈ RN , (7)

or, in an analogous way, for other densities of interest like e.g. for f :

f̂H̃(t, x̃) =
1

S det H̃

S∑
i=1

K̃(H̃−1(x̃− X̃i)), x̃ ∈ R2N , (8)

where K and K̃ denote general kernel functions, x̃ = (x,v)′, X̃i = (Xi,Vi)
′, Xi =

(Xi1, . . . , XiN )′, Vi = (Vi1, . . . , ViN )′, i = 1, . . . , S are the position, respectively the
velocity at the moment t of the simulated ith trajectory (where the superscript ′

denotes the transposition of a vector or a matrix) H and H̃ are the corresponding
bandwidth matrices, which are usually taken to be diagonal and invertible. For
the concrete numerical applications in this paper they are taken to be of the form
H = hI, with I denoting the identity matrix and h > 0 being the so-called bandwidth
parameter.

One of the most frequently used kernels in the univariate case is the Gaussian
kernel defined by K(u) = 1√

2π
exp(− 1

2u
2), u ∈ R. Other classical choices are:

Epanechnikov and its variants, triangular, rectangular etc [28]. In the multivariate
case the easiest form to be chosen for the kernel K is the multiplicative one: K(x) =
N∏
j=1

K(xj). Analogously for K̃.

Thereby, the choice of the bandwidth matrix is important, whereas the choice of
the kernel function is not crucial, since it is possible to rescale the kernel function
such that the difference between two given density estimators using two different
kernel functions is negligible [22].

The choice of the bandwidth matrix is one of the most difficult practical problems
in connection with the above method. The bandwidths are chosen according to the
available information about the density to be estimated. For example, if it is known
that the density to be estimated is very close to a normal one, then the bandwidths
can be optimally chosen with the so-called rule of thumb [28] giving an explicit
expression for the bandwidth matrix. However, this is rarely the case, therefore a
more adequate choice is to compute the bandwidth according to one of the data
driven bandwidth selection criteria. One of the most popular ones is the least squares
cross validation (LSCV), which has the goal to estimate the integral squared error
(ISE), defined by

ISE(H) =

∫
[n̂H(t,x)− n(t,x)]2dx, (9)

where n̂H(t,x) is the estimated density and n(t,x) is the true density being esti-
mated. The usual method for estimating ISE is the leave-one-out cross validation.
The minimization of the estimated ISE leads to an optimal choice of the bandwidth
matrix for a given kernel density function K. It is this bandwidth selection cri-
terion which we will use in the following. Alternatively, there are plenty of other
bandwidth selectors in literature (see e.g., [10] and the references therein).

Several results on consistency of the kernel density estimators settling the the-
oretical foundations of the nonparametric method have been derived e.g. by Ca-
coullos [3], Deheuvels [8], and Devroye [9]. The issue of convergence speed has
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been addressed a.o. by Devroye [9] and we refer for further, more specific conver-
gence results and error estimates to Holmström and Klemelä [19] and the references
therein. Similar results for the case with dependent data can be found e.g., in [36].
The computational cost of this method is tightly connected to the so-called curse
of dimensionality: the amount of data necessary for an accurate estimation grows
exponentially with the spatial dimension of the phenomena of interest. However,
for the concrete biological problems handled in this work the spatial dimension is
maximum three when estimating the macroscopic cell density and thus the size of
the required data sets is a very reasonable one. Thus, the method performs well,
which can be seen below upon comparing the kernel density estimation with the
true density e.g., for a mixture of normals, as a representative of the class of non-
Gaussian densities1. Here and for the rest of this paper the implementation has
been done in Matlab using the built in Statistical Toolbox.

Experimental results. We assess the performance of the nonparametric method by
validation against true analytical densities (in 2D). The following examples are
dealing with two densities: a normal one, respectively a mixture of Gaussians.

In the first case we consider the cell population density to be normally distributed
N (m, σ2 · I2), where m = (0.9, 0.9)′ and σ = 2.05. In the second case we estimate
the following mixture of normals:

1

2
φN (m,σ2·I2) +

1

2
φN (−m,σ2·I2), (10)

where Ip denotes the p × p identity matrix, φN (m,Σ) means the density of the
Gaussian distribution N (m,Σ). We chose for this example m = (12, 12)′ and σ = 4.
In each of these cases we constructed the corresponding nonparametric estimator
upon choosing the bandwidth with the aid of LSCV. The results are illustrated in
Figure 1 of the Appendix.

In both cases we used up to 3000 simulations (1500 in the first case and 3000
for the second case). It can be seen that this provides accurate estimates of the
corresponding densities. In the case with the simple Gaussian the absolute error
between this density and the estimated one is at most 0.004, while in the case with
the normal mixture the corresponding difference is less than 0.0004. This is due to
the higher number of simulations used to estimate the mixture. We refer e.g. to [28],
[29] for tables specifying the number of simulations needed w.r.t. the dimension of
the problem.

We decided to perform all estimations to follow with the aid of S = 10000
simulations, though we have seen above that actually less is needed in order to ensure
a good accuracy. The simulations of random variables and stochastic processes
involved in our models have been done upon using classical algorithms described
e.g., in [2], [20], where one can also find the theoretical results concerning the
performance of these algorithms. Where applicable, the choice of parameters is
consistent with the literature [25], [6], [12].

4. Some new classes of models. In this section we present some ways to en-
hance the modeling power of classical settings for cell dispersal and apply the kernel
density estimation method in the previous section to the new models to illustrate

1It is well known that any density can be arbitrarily well approximated with such normal
mixtures. Therefore, the latter are with predilection recommended for testing the methods for

estimating densities [23].
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the behavior of the respective cell populations. The corresponding figures are post-
poned to the appendix in order not to complicate the exposition. We use throughout
for the estimation a Gaussian type kernel and the bandwidths are computed in each
time step with the aid of the least square cross validation (LCSV) method. The
simulations of the corresponding SDE in the following Subsection 4.1 have been
performed with an Euler-Maruyama scheme (see e.g., [20]) for which a time step
∆t = 0.01 was used.

4.1. OU type models with stochastic volatility. One can distinguish between
two moving regimes for cells: one influenced by a chemotactic signal (when m in
Section 2.1 above is s.t. |m| 6= 0) and an unbiased random motion when m = 0.
The classical OU model with m constant can only describe one of the behavioral
paradigms (e.g., attractant or nonattractant), while obviously in practice both are
encountered in a random alternation during the life cycle of a cell population.

The following model takes into account both aspects, upon choosing m to be a
stochastic process of the form mt = g(t, Ut), with an appropriate function g and
a stochastic process Ut, which can be seen e.g., as an individual indicator of the
internal dynamics of the cell as a result of the influences of environmental factors
like local abundance of nutrients. For example, one can model Ut as another OU
process with dynamics independent on the Brownian motion Wt. In a more detailed
description it could also be the logarithm of some weighted mean over the outcomes
of an intracellular signaling pathway initiated by some input signal. A possible
parametrization for g to be used in the following is g(t, Ut) = e−γt1{Ut≤0}m, where

γ ≥ 0 is e.g. the decaying rate for the concentration of a stimulus 2. Thus, it be-
comes clear how the stochastic process Ut discussed above influences the individual
switch between the two behavioral movement regimes: with, respectively without
bias (e.g., chemoattractant). Notice that for γ > 0 the population asymptotically
passes to an unbiased regime.

In order to alleviate the assumption of Gaussianity for the involved random
variables we choose Σ to be stochastic, e.g., of the form ψ(t, Ut)Σ̃, with Σ̃ a constant
matrix and ψ an appropriate real function. For instance, one could make the choice
ψ(t, Ut) = ae−γt + (1 − ce−γt)beUt (a, b ≥ 0, a2 + b2 > 0, 0 ≤ c ≤ 1), where γ ≥ 0
and Ut have the same significance as above.

Introducing in this way the dependence on Ut in Σ also has the role to suggest
the differentiation between biased and unbiased also at the level of velocity variance,
which in the biased regime usually has to be smaller than in the unbiased one. The
above considerations then lead to the following class of models:

dxt = vt dt (11)

ρdvt = χ(g(t, Ut)− vt) dt+ ψ(t, Ut)Σ̃ dWt, t ≥ 0 (12)

dUt = αU (mU − Ut) dt+ βU dZt, (13)

with Wt and Zt independent Brownian motions, g : R+ × R→ RN , ψ : R+ × R→ R
some given functions, x(0) = x0, v(0) = v0 and U(0) = U0, with x0, v0, U0 ran-
dom variables independent of Wt and Zt and with some given distributions. The
meaning of the involved constants is the same as in Section 2.1, ρ is a measure of
persistence, αU , βU > 0, mU ∈ R.

21[·] denotes the characteristic function
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The above choice of functions g and ψ is particularly suited to capture more
features of the inter- and intracellular environments. This also improves the distri-
butional properties of the models, which would better reflect the empirical obser-
vations.

For the simulation to follow we consider the above model to illustrate both the
case with unbiased motions, as well as the one with a stochastic switcher between
the attractant and nonattractant regimes. Since there are no experimental data
available, we performed our simulations upon either taking the corresponding pa-
rameters from literature ([12], [25], [24]) or by choosing them inside biologically
relevant ranges.

The parameters ρ = 1, χ = 11 are common for both cases. For the unbiased case
we take g ≡ 0 and for the case involving the stochastic switcher we choose αU = 4,
βU = 2.4, mU = −0.15, now with g = 1{Ut≤0} ·km · (1, 1)′, ψ(t, Ut) = 4.5 + exp(Ut),
with the constant km = 0.09. The initial distributions of the involved processes are
all of Gaussian type: for the process describing the cell position N (0, σ2

p · I2) with
σp = 0.03, for the velocity N (km · (1, 1)′, 0.02 · I2), and for the stochastic switcher
between the attractant and nonattractant regimes we take N (−0.15, 5.06).

Typical trajectories and the behavior of the stochastic switcher Ut are shown in
Figure 2, while Figure 3 illustrates the initial population density3 and the corre-
sponding estimated densities at t = 6. Notice in the case of switch the displacement
of the population mean, along with a faster spread.

4.2. VJ type model preserving the features of an OU model with stochas-
tic volatility. In the previous Subsection 4.1 we have seen the power and versatility
of modeling with OU processes, due to their nice mathematical properties. It would
be interesting to translate these advantages to the VJ modeling framework. The
new model will have similar properties with those in the previous Subsection 4.1
and has the advantage of the turning kernel being implicitly specified.

One natural idea would be to change equation (11) in the description of the OU
model and put it e.g., in the form

dxt = vζ(t,Ut,Nt) dt, t ≥ 0, (14)

where Nt denotes a Poisson process with intensity λ > 0 and ζ is a function depend-
ing on time and on the processes Ut and Nt, such that the resulting process on the
right hand side of equation (14) has piecewise constant trajectories. For instance,
we can choose for the subscript in (14)

ζ(t, Ut, Nt) =
1 + cζ2Nt + [cζ3t+ cζ4U

2
t ]

cζ1
, t ≥ 0, (15)

where [·] denotes the integer part and cζk, k = 1, 2, 3, 4 are some positive constants.
The vt and Ut processes are described and interpreted as before with the aid of
equations (12),(13). The Poisson process Nt can be correlated to Ut and/or vt
(e.g., by letting λ depend on the velocity norm or on the norm of the process
gt), however for the sake of simplicity we chose it to be independent of all other
processes.

3which (unless otherwise specified) is the same for all simulation scenarios in this paper
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4.3. A VJ model for bacteria moving in a heterogeneous medium. We
consider a VJ model for a cell population which has to avoid J ∈ N∗ hostile circular
regions centered at xOk 6= m0, with k = 1, . . . , J and m0 denoting the mean of the
initial macroscopic population density. In order to describe such a complex behavior
we need to consider the turning kernel K depending not only on the velocity v′,
but also on the current position x at the moment of velocity change. One possible
adequate choice is to describe such a kernel for a given position x and previous

velocity v′ to be the density of a random variable V =
( J∑
j=1

wj(x)
)−1 J∑

j=1

wj(x)V̂j

where V̂j are random variables with a density Kj(·,v′,x), j = 1, . . . , J , with

Kj(v,v
′,x) = pj(x) ·K1j(v,v

′) + qj(x) ·K2j(v,v
′,x), (16)

pj(x) =
[
1− exp(− 1

σOj

∣∣∣‖x− xOj ‖2 − (rj + dj)
2
∣∣∣)] · 1Rn−B̄(xO

j ,(rj+dj))(x), (17)

qj(x) = 1− pj(x), rj , dj > 0, wj(x) = exp(ξjqj(x)), ξj > 0, x ∈ RN , (18)

where rj is the radius of the obstacle centred in xOj , σOj and dj are some positive
parameters allowing for a versatile control of the aversion with respect to the avoid-
ance region. Large values of these parameters will force the cell to remain away from
the obstacle. In relation (17) above, B̄(xOj , (rj + dj)) is the closed ball centered in

xOj and with radius rj + dj and 1[·] denotes as before the characteristic function.
The positive space dependent weights {wj}j quantify the influence of the obstacles
on the cell motion: the nearer an obstacle is to the cell, the greater becomes its
influence. The role of the parameters ξj is to provide a more flexible control of this
influence.

The above turning kernels {Kj}j are mixtures with position depending weights
{pj(x), qj(x)} of two types of kernels {K1j}j and {K2j}j , the first one modeling a
usual VJ movement and the other one being specialized in describing the motion
around the avoidance region. According to the distance to the obstacles, the pre-
vious system of mixture weights has the role to induce switching between a motion
type dictated by {K1j}j or one following {K2j}j . For instance, the kernels in the

former family can be some Gaussians with mean χ1j(p
K1j

1
xO
j −mO

‖xO
j −mO‖

+ q
K1j

1
v′

‖v′‖ ),

p
K1j

1 +q
K1j

1 = 1 4 5 and given covariance Σ1j , and where χ1j are rescaling constants
such that the mean speed is in some biologically reasonable interval (for instance
10-20 µm/s, see [11]). For the second kernel family {K2j}j , a possible choice is to
take them as the corresponding densities of the random variables {VK2j

}j∈J given

e.g., by VK2j = sign(<
x−xO

j

‖x−xO
j ‖
, Ṽj >)Ṽj , where 6 Ṽj is a random vector having

any type of density which is suitable to describe a classical bacterial motion. For
instance, it can be chosen to be a Gaussian vector with some variance Σ2j and a

mean χ2j(p
K2j

1
xO
j −x

‖xO
j −x‖

+ q
K2j

1
−v′

‖v′‖ ), p
K2j

1 + q
K2j

1 = 1, where χ2j has a similar rescal-

ing role as χ1j and the minus in front of the velocity v′ was chosen in order to allow
for drastic direction changes. In this model, too, the velocity changes are modeled
with a Poisson process with intensity λ.

4Choosing p
K1j

1 > q
K1j

1 will induce a biased movement towards the obstacle j.
5we make the convention ṽ/‖ṽ‖ = 0, whenever ‖ṽ‖ = 0 and for any ṽ ∈ RN

6< ·, · > denotes the scalar product in RN
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A cell trajectory simulated with the aid of this model can be found in Figure
5a, while the estimated population density at several time moments is shown in
the rest of Figure 5 and in Figure 6. One can see how the cells circumvent the
unexpedient areas. Since we considered a situation where the movement was biased,
the cell population will recollect after passing the avoidance regions and will migrate
further as a cohesive entity in the direction of its bias. The simulations have been
done with the following set of parameters: J = 4, xO1 = (1.5, 4.6)′, xO2 = (3, 1.9)′,
xO3 = (5, 3.6)′, xO4 = (1, 0.5)′, r1 = 0.7, r2 = 0.5, r3 = 0.2, r4 = 0.3, dj = 0.3,

Σ1j = Σ2j = 0.1 · I2, ξj = 5, p
K1j

1 = 0.7, p
K2j

1 = 0.5, χ1j = χ2j = 15 for all
j = 1, . . . , J , σOj = 2 for j = 1, 3 and σOj = 3.2 for j = 2, 4, mO = (0, 0)′, λ = 2.
Following the same ideas, new adequate kernels can be constructed for further
interesting aspects like finding food sources or tracking of a chemoattractant [32].
Moreover, this allows us to obtain a large and flexible class of models, for which
the majority of the corresponding kernels no longer satisfy the rather unrealistic
condition (6) imposed in [17], [26].

5. The nonparametric approach as a numerical method for PDEs. In this
section we intend to offer a new perspective to the nonparametric approach and
interpret it as a numerical method for solving the integro-differential PDEs of the
type presented in Section 2. Thus, we consider in the following an example of PDE
for the OU type of cell motion, which we solve numerically both with an appropriate
classical method and with the nonparametric procedure, then illustrate graphically
the difference between these results. It is quite difficult to directly solve numerically
the Boltzmann type equation in the VJ case, however it also reduces under suitable
assumptions and in the macroscopic limit (with an adequate scaling) to a Fokker-
Planck equation. We refer to [4] for further details. Since we solve for the OU case
an FKE we shall not do it again for the VJ case.

Let us consider the forward Kolmogorov equation (4) corresponding to the OU
system (2), with the following parameters: ρ = 1, χ = 11, m = 0.09 · (1, 1)′, and
Σ = diag(3.2, 4.5). In order to solve this PDE on an unbounded domain with
a standard procedure we use the method of moments, since unlike other classical
numerical methods it does not require to specify a bounded domain with the afferent
conditions on the boundary. The method has already been applied e.g., in [14] in a
fairly general context. With this technique finding the numerical solution of a PDE
reduces to solving a system of ODEs, which can be done with standard Matlab
procedures. However, it is well known that this method is only reliable for simple
models and fails for more complex settings.

Here we translated the method of moments to our particular FKE case, while
reducing the system upon using the fact that we deal here with normal population
densities and accordingly expressing the higher order moments with respect to those
up to the second order, from which the macroscopic densities of interest can be easily
recovered. The errors between the macroscopic densities obtained with this method
and with the nonparametric estimation are illustrated for the time moments t = 0.2,
t = 0.4 and t = 0.6 in Figure 4. Notice that the maximum absolute error is for
all time moments less than 0.009. Thus, the nonparametric method also behaves
well as a numerical procedure for solving PDEs. Clearly, it can only be applied
to the (rather large) class of PDEs emerging from a stochastic framework which
enables one to perform simulations of the involved processes. More precisely, if
the solution f (or any of its bijective transformations) of a PDE is a density of
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some stochastic process Xt whose trajectories can be numerically simulated, then
the above nonparametric technique can be used to numerically solve that PDE. If
this is the case, then the advantages of this method become clear: unlikely most
of the classical methods, it does not need the whole meshing instrumentary and
does also not require imposing conditions on some artificial domain boundaries.
This is particularly interesting when the shape of the domain is unknown or the
domain is unbounded, as is both usually faced when handling biological problems.
Moreover, the algorithm is relatively easy to implement and, as already mentioned
in Section 3, there are well established results about its convergence properties.

6. Conclusions and comments. We proposed a class of new models for cellular
dispersal which are able to enhance the description of relevant biological phenomena
without complicating too much the corresponding settings.

Since the PDE approach for these models would lead to considerable technical
difficulties we proposed an alternative way based on the kernel density estimation
technique, which is very efficient for the problems handled in this paper, due to
their small spatial dimension. Moreover, it works under less restrictive assumptions
and it also allows handling some critical cases where the PDE approach becomes
questionable. The great flexibility of this method relies on the fact that one only
needs a model for cell movement from which trajectory simulations can be per-
formed, so it allows to place the focus on modeling the cell movement rather than
forcing intuitive biological facts into the compulsion of a PDE model for which a
lot of assumptions have to be satisfied.

We gave here only a small selection of the features which can be modelled and
handled with the aid of this method. For a larger variety of models, e.g., allowing
for resting phases, tracking of a food source or a chemoattractant we refer to [31],
[32].

The examples presented in this work (an OU type model with an individual
switcher between attractant and nonattractant, VJ type model for a population
avoiding some hostile regions or a velocity jump movement described with the aid
of an OU type model) seem to be numerically infeasible in the framework of a PDE
approach, if such a PDE can be written at all. This clearly shows the advantage
of using the nonparametric approach for a simple and direct treatment of many
realistic cases. Most numerical methods for the PDEs are only able to solve the
macroscopic limits, which however are known to provide a rather pale reflection of
the actual biological problem.

Our approach provides an alternative to equation free numerical techniques like
e.g. gap tooth methods (see e.g. [13]) and it seems to be more effective, since it
needs a considerably smaller number of simulations to recover the dynamics of the
cell population density. Thus, the gap tooth method applied in e.g. [11] needed
106 simulations, whereas the above nonparametric method led to very good results
with up to 10000 simulations, as could be seen in Sections 3 and 5. This is mainly
due to the good asymptotic properties of the nonparametric estimator and, again,
to the low phase space dimension. Moreover, the technique can also be used as
a numerical method for solving a large class of PDEs derived from a stochastic
framework. This is particularly interesting -among others- for bacterial motion in
the VJ case, where the corresponding PDE is a Boltzmann-like equation which -
when coupled to the chemoattractant equation- has been handled so far only via
passage to the macroscopic limits.
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The method can be applied to any model from which one can simulate trajec-
tories, thus to most models encountered in literature, including the multiscale ones
involving internal dynamics and the influence of a chemoattractant, the latter be-
ing a topic which has recently attracted increasingly interest also in the context of
tumor cell migration through tissue networks [18]. The use of the kernel density
estimation method for a multiscale model involving intracellular dynamics and mix-
ture based turning kernels explicitly depending on the chemotactic signal has been
handled in [33].

In the present work the nonparametric approach was applied in the context
of independent cell trajectories. However, it can also be employed under fairly
general conditions even in the case of dependent data (see e.g., [27], [36] for the
mathematical framework), which opens the possibility of using this method also for
self-organization models. This is ongoing work.

Appendix: Simulation and estimation results

(a) (b)
Figure 1. Plot of differences between real and estimated densities for the

experiment in Section 3 with the simple normal distribution (1a) and with
1500 simulations, respectively with the normal mixtures (1b) and with 3000

simulations.

(a) Unbiased motion (b) Use of Ut (c) The process Ut

Figure 2. Simulation scenario 4.1. (2a),(2b): typical trajectories in the OU

case. Start ∗, end B.
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(a) Initial cell density (b) Unbiased (c) Use of Ut

Figure 3. Simulation scenario 4.1. Macroscopic cell density (initial and
estimated at t = 6).

(a) t = 0.2 (b) t = 0.4 (c) t = 0.6
Figure 4. Difference between the macroscopic density obtained by using

the method of moments and its nonparametric estimation.

(a) Typical
bacterium
trajectory

(b) t = 25 (c) t = 40

Figure 5. Simulation scenario 4.3: estimated macroscopic density at several
time moments.
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(a) t = 60 (b) t = 95 (c) t = 135

(d) t = 150 (e) t = 170 (f) t = 245
Figure 6. Simulation scenario 4.3: avoiding 4 circular regions with different

radii (continued from Figure 5).
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