Impact dynamics in biped locomotion analysis: Two modelling and implementation approaches

  • Received: 01 September 2009 Accepted: 29 June 2018 Published: 01 June 2010
  • MSC : 90C33, 70E18, 37M05.

  • Stability during the biped locomotion and especially humanoid robots walking is a big challenge in robotics modelling. This paper compares the classical and novel methodologies of modelling and algorithmic implementation of the impact/contact dynamics that occurs during a biped motion. Thus, after establishing the free biped locomotion system model, a formulation using variational inequalities theory via a Linear Complementarity Problem then an impedance model are explicitly developed. Results of the numerical simulations are compared to the experimental measurements then the both approaches are discussed.

    Citation: Khalid Addi, Aleksandar D. Rodić. Impact dynamics in biped locomotion analysis: Two modelling and implementation approaches[J]. Mathematical Biosciences and Engineering, 2010, 7(3): 479-504. doi: 10.3934/mbe.2010.7.479

    Related Papers:

    [1] Carlos Castillo-Chavez, Baojun Song . Dynamical Models of Tuberculosis and Their Applications. Mathematical Biosciences and Engineering, 2004, 1(2): 361-404. doi: 10.3934/mbe.2004.1.361
    [2] Rachel Clipp, Brooke Steele . An evaluation of dynamic outlet boundary conditions in a 1D fluid dynamics model. Mathematical Biosciences and Engineering, 2012, 9(1): 61-74. doi: 10.3934/mbe.2012.9.61
    [3] Yuyi Xue, Yanni Xiao . Analysis of a multiscale HIV-1 model coupling within-host viral dynamics and between-host transmission dynamics. Mathematical Biosciences and Engineering, 2020, 17(6): 6720-6736. doi: 10.3934/mbe.2020350
    [4] Xingjia Li, Jinan Gu, Zedong Huang, Chen Ji, Shixi Tang . Hierarchical multiloop MPC scheme for robot manipulators with nonlinear disturbance observer. Mathematical Biosciences and Engineering, 2022, 19(12): 12601-12616. doi: 10.3934/mbe.2022588
    [5] Zhen Yang, Junli Li, Liwei Yang, Qian Wang, Ping Li, Guofeng Xia . Path planning and collision avoidance methods for distributed multi-robot systems in complex dynamic environments. Mathematical Biosciences and Engineering, 2023, 20(1): 145-178. doi: 10.3934/mbe.2023008
    [6] Simphiwe M. Simelane, Phumlani G. Dlamini, Fadekemi J. Osaye, George Obaido, Blessing Ogbukiri, Kehinde Aruleba, Cadavious M. Jones, Chidozie W. Chukwu, Oluwaseun F. Egbelowo . Modeling the impact of public health education on tungiasis dynamics with saturated treatment: Insight through the Caputo fractional derivative. Mathematical Biosciences and Engineering, 2023, 20(5): 7696-7720. doi: 10.3934/mbe.2023332
    [7] Qingyun Zhang, Xinhua Zhao, Liang Liu, Tengda Dai . Dynamics analysis of spatial parallel robot with rigid and flexible links. Mathematical Biosciences and Engineering, 2020, 17(6): 7101-7129. doi: 10.3934/mbe.2020365
    [8] Zhen Liu, Song Yang, Tao Ding, Ruimin Chai . Dynamic modeling and performance analysis of a lower-mobility parallel robot with a rotatable platform. Mathematical Biosciences and Engineering, 2023, 20(2): 3918-3943. doi: 10.3934/mbe.2023183
    [9] Fumin Zhang, Zhipeng Qiu, Balian Zhong, Tao Feng, Aijun Huang . Modeling Citrus Huanglongbing transmission within an orchard and its optimal control. Mathematical Biosciences and Engineering, 2020, 17(3): 2048-2069. doi: 10.3934/mbe.2020109
    [10] Da Song, Meng Fan, Ming Chen, Hao Wang . Dynamics of a periodic stoichiometric model with application in predicting and controlling algal bloom in Bohai Sea off China. Mathematical Biosciences and Engineering, 2019, 16(1): 119-138. doi: 10.3934/mbe.2019006
  • Stability during the biped locomotion and especially humanoid robots walking is a big challenge in robotics modelling. This paper compares the classical and novel methodologies of modelling and algorithmic implementation of the impact/contact dynamics that occurs during a biped motion. Thus, after establishing the free biped locomotion system model, a formulation using variational inequalities theory via a Linear Complementarity Problem then an impedance model are explicitly developed. Results of the numerical simulations are compared to the experimental measurements then the both approaches are discussed.


  • This article has been cited by:

    1. Yifang Liu, Maira Saboia, Vivek Thangavelu, Nils Napp, 2019, Approximate Stability Analysis for Drystacked Structures, 978-1-5386-6027-0, 8819, 10.1109/ICRA.2019.8794158
    2. Aleksandar Rodić, Svemir Popić, Miloš Jovanović, 2020, 9780128156599, 109, 10.1016/B978-0-12-815659-9.00005-6
    3. Marija Tomic, Veljko Potkonjak, Aleksandar Rodic, Vesna Antoska, Human-and-Humanoid Motion - Distinguish Between Safe and Risky Mode, 2012, 45, 14746670, 524, 10.3182/20120905-3-HR-2030.00070
    4. Yun Bi, Jeremy J. Rickli, Ana Djuric, 2022, Chapter 28, 978-3-030-90699-3, 250, 10.1007/978-3-030-90700-6_28
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2509) PDF downloads(470) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog