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Abstract. Stability during the biped locomotion and especially humanoid
robots walking is a big challenge in robotics modelling. This paper compares
the classical and novel methodologies of modelling and algorithmic implementa-
tion of the impact/contact dynamics that occurs during a biped motion. Thus,
after establishing the free biped locomotion system model, a formulation using
variational inequalities theory via a Linear Complementarity Problem then an
impedance model are explicitly developed. Results of the numerical simulations
are compared to the experimental measurements then the both approaches are
discussed.

1. Introduction. Strong demands of precise description and accurate mathemat-
ical modeling of human locomotion in medicine, biomechanics, sport, humanoid
and rehabilitation robotics, etc., are serious challenge to the scientists. Testing
and analysis of the physical abilities of the handicapped and/or injured patients or
aged people (for the purpose of physiotherapy and medical recover) is sometimes
dangerous and painful and can be very expensive, too. To generate new technics
of the exercises or to improve existing ones in sport demands the general model
of human locomotion, valid for different human postures. To design the optimal
structure of a biped mechanism as well as to control humanoid robots, researchers
need very accurate kinematic and dynamic models of biped locomotion mechanisms.
Also, accurate model of biped locomotion is necessary in rehabilitation robotics to
ensure to the designer to adopt the active prothesis or equipment to the patient
necessities. To get a clear insight into the system (biological or technical) behavior
in many locomotion manoeuvres under the same or different test conditions, the
advance mathematical models have to be derived.
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Humanoids, being the future of robotic science, are becoming more and more
human-like in all aspects of their functioning. Thus, it is generally accepted that
their shape and motion should be based on biomechanical principles. Because of
the complexity and high requirements imposed on such robots, their control system
has to utilize the dynamic model. So, the control, the design, and the simulation,
strongly require general dynamic models that will make humanoid robots capable
of handling the increasing diversity of expected tasks [1, 2].

Biped locomotion, in the sense of gait stability and maintenance of dynamic
balance, represents one of the most complex known natural motions. Anthropo-
morphic locomotion is performed by a synergy of large number of body muscles.
Performances of biped gait differs from person to person, depending on different fac-
tors such as: physical and physiological capabilities and some pathologic conditions
but sometimes also on psychological condition of the person, etc.

Human motion, where the locomotion system is in contact with the ground sup-
port (walking, climbing the stairs, running, gymnastic exercise, etc.) or some other
mobile supporting object is in research focus of this contribution. The authors are
well aware of the extreme complexity of the problem of modeling biological sys-
tems, which stems from the complexity of the mechanical structure and actuation.
The fact that the control of biological system is a still insufficiently studied area,
contributes greatly to the significance of the problem.

The stability of the humanoid robot depends of the precision of the dynamics
approximation. Indeed, in the instant when the foot of the swinging leg comes into
contact with the ground, a large impact force can be generated. Active control
of such impact force would require robot’s controllers and actuators to have very
wide bandwidth and be capable of generating a large instantaneous power. It is not
realistic to have controllers with a wide bandwidth and huge powerful actuators,
which add more weight to the biped robot.

This paper deals especially with impact dynamics and the frictional contact mod-
elling of the biped feet with the ground in order to increase the dynamics approxima-
tion allowing better stability. Authors developed a new and more precise frictional
impact/contact model alternative to the traditional models usually implemented by
the robotics community among them the impedance model.This approach yields a
Linear Complementarity Problem formulation (LCP) model. The LCP formulation
belongs to the family of the variational inequalities theory [3, 4, 5, 6]. Besides the
accuracy, implementing models have other requirements namely computation speed.
This paper develops mainly a comparison of the two cited approaches showing their
different properties and their applicability range.

The paper starts with the biped locomotion modelling then presents the two
contact models and the results of the numerical simulations. The last part is devoted
to the comparison of the different approaches

2. Modeling of biped locomotion. To move, human body uses more than 600
muscles and 300 degrees of freedom (DOFs) [7]. Let us consider the biped robotic
system of the anthropomorphic structure illustrated in Figure 2. Let the joints
of the system be such to allow n independent motions. Let these joint motions
be described by joint angles forming the vector of the generalized coordinates q =
[q1 . . . qn]T . In this paper, a biped locomotion mechanism of the anthropomorphic
structure will be considered as a mechanical representative of human body. In that
sense, an articulated system, consisting of the basic kinematic chain and four side
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branch chains, as shown in Figure 2, is considered as a biped mechanism. In a
mechanical sense, it represents a multi-body, large-scale dynamic system with a
variable structure. Concerning the kinematic structure, the torso is assumed to be
the basic link or just the basis of the mechanism. The arms and the legs represent
the corresponding branches known in robotics as lateral kinematic chains. Let
us consider the mechanical system of the anthropomorphic structure illustrated in
Figure 2. It represents a complex, branched kinematic chain with N mechanical
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Figure 1. Complex kinematic structure of a biped locomotion
mechanism - branched kinematic chain of the anthropomorphic
structure

degrees of freedom (DOFs). Its motion is defined in the fixed coordinate system
attached to the plane of motion. Position of the mechanism in the free space is
determined by the relative position of the mobile coordinate system O′x′y′z′ with
respect to the reference coordinate systemOxyz (Figure 2a). The mobile coordinate
system O′x′y′z′ is attached to the mass center of the lower trunk (the hip link) that
is assumed to be the basic link, i.e. the basis of the robot. Simultaneously with the
displacement of the basic link, the rotations of the biped links at the mechanism’s
joints take place. Thus the entire mechanism, keeping its lump mass constant,
changes its inertial properties due to the motion of biped links at the joints of the
arms, legs and trunk. Besides, due to the motion of the mechanism as well as due
to the influence of the external disturbances acting upon the system or carrying the
payload the contact forces and contact moments arise at the particular points of
the biped mechanism. Let the joints of the system be such to allow n independent
motions. Let these joint motions be described by joint angles forming the vector
of the generalized coordinates q = [q1 . . . qn]T . The terms ‘joint coordinates’ or
‘internal coordinates’ are commonly used for this vector in robotics.

This set of coordinates describes completely the relative motion of the links
(Figure 2). With the basic link in the chain fixed, the system would have n DOFs.
However, the basic link in the chain is not fixed but allowed to perform six inde-
pendent motions in space. Let the position of the basic link be defined by the three
Cartesian coordinates (x, y, z) of its mass center and the three orientation angles
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Figure 2. Kinematic scheme of a biped locomotion system used in simulation

(ϕ-roll, θ-pitch and ψ-yaw), forming the vector X = [x y z ϕ θ ψ]T . Now, the
overall number of DOFs for the system is N = 6 + n, and the system position is
defined by

Q = [X q]T = [x y z ϕ θ ψ q1 . . . qn]T (1)

It is assumed that each joint has an appropriate actuator. This means that each
motion qj has its own drive - the torque τj . Note that there is no drive associated to
the basic body coordinates X. The vector of the joint drives is τ = [τ1 . . . τ2]

T , and
the augmented drive vector (N -dimensional) is T = [O6 τ ]

T = [0 . . . 0 τ1 . . . τn]T .
Similarly, with human beings muscles represent biological power-trains. Pairs of
muscles by their synchronized contractions and extensions move the bones of the
skeleton at its joints. The dynamic model of the biped mechanism (humanoid) has
the general form [1, 7]:

H(Q, d)Q̈+ h(Q, Q̇, d) = τ + JT (Q, d)F

h(Q, Q̇, d) = hccf (Q, Q̇, d) + hg(Q, d)
(2)

Dimensions of the inertial matrix isH(N×N). Dimensions of the vectors containing
centrifugal, Coriolis’ and gravity effects is h(N × 1). Vector h(Q, d) consists of two

vectors: hccf(Q, Q̇, d) the vector of centrifugal and Coriolis’ forces and the vector of
gravity forces and moments hg(Q, d). Dimension of the vector of ground reaction,
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external load and disturbance forces is: F (m×1). Dimensions of the Jacobi matrix
is J(m×N). Vector d(l×1) represents a parameter vector including geometry (links’
lengths, positions of the links’ mass centers), as well as the corresponding dynamic
parameters (links’ masses, moments of inertia) of the robotic system. JT (Q, d)F
describes the impact/contact term.

From the mechanical point of view, the stability of a humanoid robot is the most
important criteria that try to reach by roboticians using mostly the Zero Moment
Point (ZMP) theory [7]. This theory specifies the point with respect to which
dynamic reaction force at the contact of the foot with the ground does not produce
any moment (Figure 3).

Figure 3. Zero-Moment Point illustration: a) Legs of a humanoid
robot General arrangement of force sensors in determining the ZMP
position; b) Zone of possible ZMP positions when the robot is in
the state of dynamic balance

In the following sections we present two different frictional impact modelling
starting with the Linear Complementarity Problem (LCP) then the impedance
model.

3. Modeling of foot contact dynamics via a LCP formulation. Biped lo-
comotion mechanisms are, due to the frictional impact/contact, called unilaterally
constrained dynamical systems. Generally speaking, the normal contact expresses
that the points in contact do not penetrate the ground and that the reaction force
is always unidirectional. On the other hand linearized 3D Coulomb friction law, as
shown in Figure 4, is considered.

In this section we follow the lines of [6] Let us consider the foot that moves to-
wards the ground, strikes it and stays in contact. To express mathematically the
forthcoming contact, the motion of the considered link should be described by an ap-
propriate set of coordinates. Since the link is a body moving in the three dimensional
space, it is necessary to consider six coordinates. Let this set be g = [g1 . . . g6]

T

and let call them functional coordinates (Figure 5a). Functional coordinates are
introduced [1] as relative ones, defining the position of the link with respect to the
ground to be contacted.

A consequence of the rigid link-object contact is that the link and the object
perform some motions, along some axes, jointly (Figure 5b). These are constrained
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Figure 4. 3D Coulomb friction cone

(restricted) directions (e.g. g3, g5, Figure 5b). Let there be m such directions.
Relative position along these axes does not change. Along the other axes (e.g. g1,
g2, g4, g6, Figure 5b), relative displacement is possible. These are unconstrained
(free) directions. In order to get a simple mathematical description of the con-
tact, g-coordinates are introduced to describe the relative position. Zero value of a
coordinate indicates the contact along the corresponding axis.

So, the motion of the external object (to be contacted) has to be known (or
calculated from the appropriate mathematical model), and then the g-frame fixed
to the object (the plane π in this case, Figure 5) is introduce to describe the relative
position of the link in the most proper way. Thus, in a general case, the g-frame
is mobile. As the link is approaching the object, some of g-coordinates reduce and
finally reach zero. The zero value means that the contact is established. These
functional coordinates (which reduce to zero) are called restricted coordinates and
they form the subvector gc of dimension m. The other functional coordinates are

free and they form the subvector gf of dimension 6 −m. Now, one can write:

[gc, gf ] = K · g (3)

where K is a 6 × 6 matrix used to rearrange the functional coordinates (elements
of the vector g) and bring the restricted ones to the first positions. In order to
arrive at a general algorithm, the foot motion has to be described in a general way
and, once the expected contact is specified, relate this general interpretation to the
appropriate s-frame.

The general description of the link motion assumes three Cartesian coordinates of
a selected point of the link plus three orientation angles: sl = [xl yl zl ϕl θl ψl]

T , the
subscript l standing for “link”. These are absolute external coordinates in the Oxyz
reference coordinate system (Figure 5a). The relation between the link coordinates
sl and the system position vector Q defined in (1) is given by:

sl = sl(Q, d) (4)

ṡl = Jl(Q, d)Q̇ (5)

s̈l = Jl(Q, d)Q̈+Al(Q, Q̇, d) (6)

where Jl =
∂sl

∂Q
is a 6 × N Jacobian matrix and Al =

∂2sl

∂Q2 Q̇
2 is a 6-dimensional

adjoint vector. Let us concentrate on the object, i.e. the ground (example of an
immobile object). In a general case, the object is mobile, so, its position is described
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Figure 5. a) Functional coordinates of the foot contact; b) Rigid
frictional impact along the foot edge

by the absolute external coordinates: sb = [xb yb zb ϕb θb ψb]
T , the subscript b

standing for “object”.
When the g-frame is introduced to define the relative position of the link with

respect to the object, the coordinates will depend on both sl and sb:

g = g(sl, sb) (7)

or in the Jacobian form:

ġ = Jglṡl + Jgbṡb (8)

g̈ = Jgls̈l + Jgbs̈b +Ag. (9)

where the dimension of the Jacobi matrices is Jgl, Jgb ∈ R
6×6, and the dimension

of the adjoint vector Ag ∈ R
6×6. Model (9) can be rewritten if the separation (3)

is introduced. The model becomes:

g̈c = Jc
gls̈l + Jc

gbs̈b +Ac
g. (10)

g̈f = Jf
gls̈l + Jf

gbs̈b +Af
g . (11)

The object motion, sb(t) in equations (7)-(9), is either prescribed or calculated
from a separate mathematical model of the object. Equations (10) and (11) can be
rewritten if (6) is introduced:

g̈c = Jc
glJlQ̈+ Jc

glAl + Jc
gbs̈b +Ac

g = Jc
g,TOT (Q, t)Q̈+ Ac

g,TOT (Q, Q̇, t). (12)

g̈f = Jf
glJlQ̈+ Jf

glAl + Jf
gbs̈b +Af

g = Jf
g,TOT (Q, t)Q̈+Af

g,TOT (Q, Q̇, t). (13)

where the model matrices are: Jc
g,TOT = Jc

glJl, A
c
g,TOT = Jc

glAl + Jc
gbs̈b + Ac

g,

Jf
g,TOT = Jf

glJl and Af
g,TOT = Jf

glAl + Jf
gbs̈b +Af

g .
In this paper we consider the case which encompasses rigid, durable lasting con-

tacts. This means that the two bodies (the biped and the object), when the impact
of touching each other is over, continue to move together for some finite time. The
example is walking. When the foot touches the ground, it will keep the contact for
some time before it moves up again. It is clear that a general theory of impact,
including the elasto-dynamic effects, can cover all the mentioned contacts. So, we
are going to elaborate in detail one representative type of contact - rigid, durable
contact.
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3.1. Modeling of a rigid, durable contact with object - three phases. This
section elaborates:

• rigid contact - allowing no deformation between the two bodies;
• the case of the object motion that is given and cannot be influenced by the

biped (thus, sb(t) is considered as given);
• durable contact lasting for a finite time after the impact.

One may recognize the three phases of such contact task [1, 7]: (i) approaching,
(ii) impact, and (iii) regular contact motion.

The first phase is approaching. The link moves towards the object. All functional
coordinates g are free but some of them (the subvector gc ) reduce to zero.

The second phase is the impact. In the preceding phase (approaching), the
motion of the link was planned so as to reach the object with a relative velocity
equal to zero (collision-free contact). This is the reference motion. However, the
control system produces the actual motion different from the reference. The tracking
error leads to collision, a non-zero-velocity contact. The impact forces will affect
the system state - after the impact the link state will comply with the object state
and the type of contact.

The third phase is the regular contact motion. The contact forces make the link
move according to the character of the contact.

We now elaborate these phases starting with the first one. The third phase
(regular contact motion) will be discussed before the second phase (impact) since
it is more convenient for the mathematical method applied.
First phase of contact task - approaching. The approaching step is an uncon-
strained (free) motion. Although all coordinates from the vector g are free, we use

the separation (3) since the subvector gc is intended to describe the coming contact.
Dynamics of the approaching is described by the model (2). The model rep-

resents the set of N scalar equations that can be solved for N scalar unknowns -
the acceleration vector Q̈ (thus enabling integration and calculation of the system
motion Q(t)). The link motion in the absolute external frame, sl, is calculated by
using (6). For the approaching phase, it is more interesting to observe functional
coordinates. Since the object motion sb is given, relation (9) (or (10), (11)) allows
one to calculate the link functional trajectory g(t).

The reference motion g
0
(t) is planned so as to make a zero-velocity contact at

the instant t0c : g
0
(t0c) = 0 : and ġ

0
(t0c) = 0. Due to the control system, tracking

error will appear and the actual motion will differ from the reference. So, it is
necessary to monitor the coordinates gc and detect the contact as the instant t′c
when gc reduces to zero (g(t′c) = 0). It will be t′c 6= t0c , and the contact velocity will

not be zero: ġ(t′c) 6= 0.
During the approaching, the integration of the system coordinates Q is done. So,

at the instant of impact, there will be some system state Q(t′c), Q̇(t′c).
Third phase of contact task - regular contact motion. Regular contact mo-
tion starts when the transient effects of the impact vanish. In this phase the re-
stricted coordinates are kept zero. So,

gc(t) = 0 (14)

and accordingly

ġc(t) = 0, g̈c(t) = 0. (15)
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Now, relation (12) is replaced with

Jc
g,TOT (Q, t) Q̈+Ac

g,TOT (Q, Q̇, t) = 0 (16)

while relation (13) still holds:

g̈f = Jf
g,TOT (Q, t) Q̈+Af

g,TOT (Q, Q̇, t).

In contact problems, the dynamic model has to take care of contact forces. Model
(2), derived for a free biped, should be supplemented by contact forces. A con-
tact force acts along each of constrained axis. So, there is a reaction force (or
torque) for each coordinate from the set gc. There are m independent reactions.

Let Fr = [F1, · · · , Fm]T be the reaction vector. If a coordinate gc
j is linear (trans-

lational), then the corresponding reaction Fj is a force. For a revolute coordinate,
the corresponding reaction is a torque.

The contact-dynamics model is obtained by introducing reactions into the biped
model (2):

H(Q, d)Q̈+ h(Q, Q̇, d) = τ + Jc
g,TOT (Q, d, t)TFr (17)

Since this model involves N scalar equations and N +m scalar unknowns (vectors

Q̈ and Fr ), it is necessary to supply some additional conditions. The additional
condition is the constraint relation (16), containing m scalar equations. So, (17)
and (16) describe the dynamics of a constrained biped, allowing one to calculate

the acceleration Q̈ and reaction Fr (thus enabling the integration and calculation
of the system motion).
Second phase of contact task - impact. The impact phase starts when the
biped link reaches the surrounding object(s). Strictly speaking, the restricted coor-
dinates (elements of gc) reach zero one by one. So, a complex contact is established
as a series of simpler contact effects. According to [1] the impact model is derived
assuming that all the coordinates gc attain zero simultaneously and establish a com-
plex contact instantaneously. Let t′c be the instant when the contact is established
(restricted coordinates reduce to zero and the impact comes into action) and let t′′c
be the instant when the impact ends. So, the impact lasts for ∆t = t′′c − t′c. For
this analysis we assume that the impact is infinitely short, i.e. ∆ t → 0. We also
assume that the m coordinates (forming gc) reduce to zero simultaneously. We now
integrate the dynamic model (17) over the short impact interval ∆t:

H∆Q̇ = (Jc
g,TOT )T Fr ∆t (18)

where

∆Q̇ = Q̇(t′′c ) − Q̇(t′c) = Q̇′′ − Q̇′. (19)

During the approaching phase, the system model is integrated and the motion
Q(t), Q̇(t) is calculated. Thus, the state at the instant t′c, i.e. Q′ = Q(t′c), Q̇

′ =

Q̇(t′c), is considered known. Since the object motion is also known, it is possible to
calculate the model matrices H , Jc

g,TOT in equation (18). The position does not

change during ∆ t → 0, and hence: Q′′ = Q(t′′c ) = Q′. Now, the model (18) (along
with (19)), contains N scalar equations with N +m scalar unknowns: the velocity

after the impact, Q̇′′ = Q̇(t′′c ) (dimension N), and the impact momentum Fr∆t
(dimension m). The additional equations needed to allow solution are obtained
starting from the constraint relation (16). Integrating (16) over ∆ t → 0, one
obtains

Jc
g,TOT (Q, t) ∆ Q̇ = 0 (20)
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i.e. the additional m scalar conditions. The augmented set of equations (18) and
(20) (along with (19)) allow to solve the impact. The velocity after the impact,

Q̇′′ = Q̇(t′′c ), is found starting from the known state in t′c. The impact momentum

Fr∆t is determined as well. The new state Q′′, Q̇′′ represents the initial condition
for the third phase, i.e. the regular contact motion (explained in the previous
paragraph).

Another approach, which is more realistic than an idealized single-point con-
tact considered previously, deals with multi-point frictional contact of the biped’s
feet. In this case, the restricted coordinates (elements of gc) reach zero one by one.
The impact begins when the biped foot (feet) reaches the constraint surface π as
presented in Figure 3.1. Constraint in a general case can be an ordinary curve,
prismatic or flat surface. In the impact phase, the restricted coordinates gc de-
fined in (3) become zero. The existence of impact can be defined by the following
conditions:

gc(t) = 0, ġc(t) ≤ 0. (21)

In a general case, a foot impact to the constraint surface can be realized at an
infinite number of points. Consequently, the problem would be numerically too
complex. Because of that, a realistic approximation of the impact phenomenon has
to be assumed. Without losing generality, four impact points (per foot contour
i = 1, . . . , 4 or i = 5, . . . , 8, see Figure 3.1) instead of an infinite number of them
can be assumed. Here, two contact points at the heel (i.e. i = 1, 2 and i = 5, 6,
Figure 3.1) and two points at the front part of the foot (i.e. i = 3, 4 and i = 7, 8)
will be considered. Generally, three possible unilateral impacts are possible: (i)
single-point impact, (ii) two-points impact along the ordinary foot edge (e.g. the
points i = 5, 6, Figure 3.1), and (iii) four-points impact (the case of a planar impact
of the flat foot sole to the support). By considering the impact phenomenon as
a series of simpler, unilateral contacts at the particular points one can perform a
realistic analysis of the non-smooth, frictional biped contact dynamics.

Having in mind the above, some general assumptions should be put forward
before deriving the non-smooth, multi-point impact model:

• The duration of the impact is “very short” ∆t(i) → 0.
• Bodies’ impact can be generally divided in two phases: the compression phase

and the expansion phase. Since the foot impact is followed by the compression
phase, after which the biped foot stays completely or partly lying (pressed by
biped weight) on the constraint surface, the expansion phase appears only
in the special cases and will not be considered. The end of the compression
phase is the start of the regular contact.

• While the impact takes place (in the time interval ∆t) the values of all the
quantities of the multi-body system (biped mechanism) characterizing its po-
sition and orientation, as well as all non-impulse forces and torques (gravity,
centrifugal and Coriolis’), remain constant.

• Wave effects (elastic modes in the system) are not taken into account.

In the multiple-contact tasks such as biped gait, for example, there may occur
only one impact at one of the potential contact points or several impacts at several
contacts simultaneously. The theory presented in the paper covers both possibilities.
Here we will consider a system with NG = 8 possible contact points. For this
purpose four sets of indices are introduce to describe the kinematic state of each of
the contacts. Let then:
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Tl , g

(i)
Tt of motion of the particular points i = 1, . . . , 8.

ΩG = {1, 2, . . . , nG} ,ΩS =
{

i ∈ ΩG | g
(i)
N = 0

}

with nS elements

ΩN =
{

i ∈ ΩS | ġ
(i)
N = 0

}

with nN elements,

ΩH1 =
{

i ∈ ΩN | ġ
(i)
Tl = 0

}

with nH1 elements,

ΩH2 =
{

i ∈ ΩN | ġ
(i)
Tt = 0

}

with nH2 elements.

(22)

The locations of the impacts are given by the positions of the nG contact points of
ΩG. ΩS contains nS indices of the constraints with vanishing distance but arbitrary
relative velocities, ΩN describes the constraints which fulfil the necessary conditions
for continuous contact (vanishing distance and zero relative velocity in the normal
direction), and ΩH1, ΩH2 are those which are possibly sticking in two tangential
directions - longitudinal and transversal. Numbers of elements of the sets ΩS ,
ΩN , ΩH1, ΩH2 are not constant because the contact configuration of the biped
mechanism changes with time due to the stick-slip transitions, impacts and contact
loss.

For each contact point from ΩG it is possible to determine the distance g
(i)
N (Q, t)

along the normal direction to the constraint surface. If one of these indicators

becomes zero at the time instant t′c(i) and the corresponding relative velocity ġ
(i)
N

is smaller than or equal to zero, an impact occurs. The contact is then closed and
the unilateral constraint is active. The set od constraints which participate in the
impact is then given by

Ω∗

S =
{

i ∈ ΩG | g
(i)
N = 0; ġ

(i)
N ≤ 0

}

with n∗

S elements. (23)
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The set Ω∗

S contains all the sliding and sticking continuous-contact constraints

(g
(i)
N = 0), as well as the impact contacts (ġ

(i)
N ≤ 0). This enables one to ex-

amine whether a contact separates under the influence of an impact at a different
location i.

In order to determine the multi-point impact model, let us introduce the following
functional coordinates g(i), i ∈ Ω∗

S (see Figure 3.1). Instead of using the unified

g(6 × 1)-vector of the functional coordinates (defined by (3)), the set of n∗

S(3 × 1)-

vectors of the functional coordinates g(i), i ∈ Ω∗

S will be introduced. In such a

way, the relative positions of the biped feet are determined in the g(i)-frames, as

shown in Figure 3.1. Functional coordinates g(i) represent relative positions of the
feet points i with respect to the corresponding frame attached to the constraint

surface. In that sense, the normal g
(i)
N and the tangential directions g

(i)
Tl and g

(i)
Tt are

important. Tangential motions of the feet points are possible along the longitudinal

g
(i)
Tl as well along the transversal g

(i)
Tt coordinate axes (Figure 3.1). The i-th vector

of the functional coordinates g(i), i ∈ Ω∗

S can be written in the form:

g(i) =
[

g
(i)
Tl , g

(i)
Tt , g

(i)
N

]T

, i ∈ Ω∗

S . (24)

Bearing in mind the vector form (24), three components of impact forces can be

defined in the same directions. They are: the normal impact force FNi
in the g

(i)
N -

direction of the restricted motion and the tangential impact forces FTli , FTti
in the

longitudinal g
(i)
Tl - and transversal g

(i)
Tt -directions. In a physical sense, the considered

tangential forces represent the corresponding stick/slip frictional forces acting in
the plane that represents a constraint. The (3 × 1) vector FCi

of the impact force
acts at the i-th contact point Ci , i ∈ Ω∗

S , and can be defined in the form:

FCi
= [FTli , FTti

, FNi
]
T
, i ∈ Ω∗

S . (25)

Positions of the contact points Ci, i ∈ Ω∗

S are always in the constraint area (or
belong to the object that represents a constraint), and they are determined in
the inertial coordinate system Oxyz. Let now t′c(i) be the instant when the i-th
contact point of the foot and the constraint is established (i.e. when the restricted

coordinate in the normal direction g
(i)
N reduce to zero g

(i)
N = 0 and the impact comes

into action ‖FCi
‖ > 0) and let t′′c (i) be the instant when the impact of the i-th point

ends. So, the impact lasts for the time period ∆t(i) = t′′c (i) − t′c(i).
When the g(i)-frame (defined by (24)) is introduced to determine the relative

position of the i-th contour point at the foot with respect to the position of the
contact Ci (lying in the constraint plane π, Figure 3.1), the coordinates g(i) depend
on both external coordinates sCi

and sπi
:

g(i) = g(i)(sCi
, sπi

), i ∈ Ω∗

S . (26)

sCi
(Q, t) =

[

sx
Ci
, sy

Ci
, sz

Ci

]T
and sπi

(t) =
[

sx
πi
, sy

πi
, sz

πi

]T
are (3 × 1)-vectors that

define position of the contact Ci of the biped foot as well as position of the corre-
sponding point of the constraint surface π to be reached during the impact. The
positions sCi

and sπi
are determined with respect to the inertial coordinate system

Oxyz (Figure 3.1). Then, a Jacobian form can be written as:

ġ(i) =
[

ġ
(i)
Tl , ġ

(i)
Tt , ġ

(i)
N

]T

= JgCi
ṡCi + Jgπi

ṡπi
, i ∈ Ω∗

S (27)
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Equation (27) can be projected onto the g(i)-frame axes g
(i)
N , g

(i)
Tl , g

(i)
Tt , (Figure 3.1).

For this purpose three 3×1 unit vectors ñi, t̃li , t̃ti
(collinear with the corresponding

axes g
(i)
N , g

(i)
Tl , g

(i)
Tt , of the i-th system) are introduced. Then, equation (27) can be

re-written in a scalar form:

ġ
(i)
N = ñT

i JgCi
ṡCi

+ ñT
i Jgπi

ṡπi
,

ġ
(i)
Tl = t̃TliJgCi

ṡCi
+ t̃TliJgπi

ṡπi
, i ∈ Ω∗

S

ġ
(i)
Tt = t̃Tti

JgCi
ṡCi

+ t̃Tti
Jgπi

ṡπi
.

(28)

where JgCi
, Jgπi

are 3 × 3 Jacobian matrices defined in (27). The motion of the
constraint surface ṡπi

(in the case when it is mobile) is either prescribed or calculated
from a separate mathematical model of the object (constraint). If the following
kinematic relations are introduced:

sCi
= sCi

(Q, t), i ∈ Ω∗

S . (29)

ṡCi
= JCi

(Q) Q̇, i ∈ Ω∗

S . (30)

then equations (28) can be expanded to acquire the form:

ġ
(i)
N = ñT

i JgCi
JCi

(Q) · Q̇+ ñT
i Jgπi

ṡπi
= JN

gCi,TOT Q̇+AN
gπi
,

ġ
(i)
Tl = t̃TliJgCi

JCi
(Q) · Q̇+ t̃TliJgπi

ṡπi
= JTl

gCi,TOT Q̇+ATl
gπi
, i ∈ Ω∗

S

ġ
(i)
Tt = t̃Tti

JgCi
JCi

(Q) · Q̇+ t̃Tti
Jgπi

ṡπi
= JTt

gCi,TOT Q̇+ATt
gπi

(31)

where JCi
=

∂s
Ci

(Q)

∂Q
is a (3 × N) Jacobian matrix defining the dependence of

the linear velocity ṡCi
of the i-th point as a function of the generalized coordi-

nates Q̇; JN
gCi,TOT = ñT

i JgCi
JCi

(Q), JTl
gCi,TOT = t̃TliJgCi

JCi
(Q) , and JTt

gCi,TOT =

t̃Tti
JgCi

JCi
(Q) are the (1×N) total Jacobian matrices; AN

gπi
= ñT

i Jgπi
ṡπi
, ATl

gπi
=

t̃TliJgπi
ṡπi

, and ATt
gπi

= t̃Tti
Jgπi

ṡπi
are the corresponding adjoint scalars from (31).

Taking into account the previous consideration, as well as the contact force vector
(25), the contact-dynamics model (17) can be rewritten in the form that includes
multi-point contact effects:

H(Q) Q̈+h(Q, Q̇) = τ+
∑

i∈Ω∗

S

JNT

gCi,TOT ·FNi
+

∑

i∈Ω∗

S

JTlT

gCi,TOT ·FTli+
∑

i∈Ω∗

S

JTtT

gCi,TOT ·FTti
.

(32)
After certain rearrangement and simplification of the designation the relation (32)
can be written in a form that is suitable for deriving impact equations:

H Q̈+ h̃−
∑

i∈Ω∗

S

JNT

gCi,TOT ·FNi
−

∑

i∈Ω∗

S

JTlT

gCi,TOT ·FTli −
∑

i∈Ω∗

S

JTtT

gCi,TOT ·FTti
= 0. (33)

where h̃ = h−τ is an (N ×1) vector taking into account the gravity and centrifugal
effects, as well as the driving torques at the biped’s joints. Kinematic and dynamic
relations (31) and (33) represent the basis for the development of the impact model
of biped gait. Let us write them in a matrix notation:





ġ
N

ġ
Tl

ġ
Tt



 =





WN

WTl

WTt



 Q̇+





ω̃N

ω̃Tl

ω̃Tt



 . (34)

H Q̈+ h̃−
[

WT
N WT

Tl WT
Tt

]

·





FN

FTl

FTt



 = 0. (35)
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where: ġ
N

=
[

ġ
(1)
N . . . ġ

(n∗

S)
N

]T

, ġ
Tl

=
[

ġ
(1)
Tl . . . ġ

(n∗

S)
Tl

]T

, ġ
Tt

=
[

ġ
(1)
Tt . . . ġ

(n∗

S)
Tt

]T

are (n∗

S × 1) integrated vectors of the relative body (foot) velocities in the normal

and tangential coordinate directions of motion; WN =
[

JN
gC1,TOT . . . J

N
gCn∗

S
,TOT

]T

,

WTl =
[

JTl
gC1,TOT . . . J

Tl
gCn∗

S
,TOT

]T

and WTt =
[

JTt
gC1,TOT . . . J

Tt
gCn∗

S
,TOT

]T

are Jaco-

bian matrices determined for the motions in the normal and tangential directions;

ω̃N =
[

AN
gπ1

. . . AN
gπn∗

S

]T

, ω̃Tl =
[

ATl
gπ1

. . . ATl
gπn∗

S

]T

, ω̃Tt =
[

ATt
gπ1

. . . ATt
gπn∗

S

]T

are (n∗

S × 1) vectors of the adjoint scalars defined in the kinematic relations (34);

FN =
[

FN1
. . . FNn∗

S

]T

, FTt =
[

FTl1 . . . FTln∗

S

]T

, FTt =
[

FTt1 . . . FTtn∗

S

]T

are

(n∗

S × 1) vectors of normal and tangential impact forces.
After integrating equation (35) over the impact period ∆tci

= t′′ci
− t′ci

, i ∈ Ω∗

S ,
the following expression is derived:

H
(

Q̇′′ − Q̇′

)

−
[

WT
N WT

Tl WT
Tt

]

·





ΛN (t′c)
ΛTl(t

′

c)
ΛTt(t

′

c)



 = 0. (36)

Here ΛN(t′c), ΛTl(t
′

c), ΛTt(t
′

c) are the impulse momentums in the normal and tan-
gential diretions which are transferred during the impact. They can be defined in
the following way:

ΛN =
[

FN1
∆tc1

, . . . , FNn∗

S

∆tcn∗

S

]T

,ΛTl =
[

FTl1∆tc1
, . . . , FTln∗

S

∆tcn∗

S

]T

,

ΛTt =
[

FTt1∆tc1
, . . . , FTtn∗

S

∆tcn∗

S

]T

Knowing that Q̇′ = Q̇(t′c) and Q̇′′ = Q̇(t′′c ) are the instances of start and termination
of the impact, the relative velocities at these instants can be defined:




ġ
N

(t′c)

ġ
Tl

(t′c)

ġ
Tt

(t′c)



 =





WN

WTl

WTt



 Q̇′ +





ω̃N

ω̃Tl

ω̃Tt



 ;





ġ
N

(t′′c )

ġ
Tl

(t′′c )

ġ
Tt

(t′′c )



 =





WN

WTl

WTt



 Q̇′′ +





ω̃N

ω̃Tl

ω̃Tt





(37)
From the relations defined in (37), it is possible to derive the following functional
dependence between the relative velocities in two characteristic instances t′c and t′′c
of the impact. Then:





ġ
N

(t′′c )

ġ
Tl

(t′′c )

ġ
Tt

(t′′c )



 =





WN

WTl

WTt





(

Q̇′′ − Q̇′

)

+





ġ
N

(t′c)

ġ
Tl

(t′c)

ġ
Tt

(t′c)



 . (38)

Expressing the Q̇′−Q̇′′ from (36) and including it in (38), the model of the unilateral
multi-point impact of the biped locomotion system is derived:




ġ
N

(t′′c )

ġ
Tl

(t′′c )

ġ
Tt

(t′′c )



 =





WN

WTl

WTt



 H −1
[

WT
NW

T
TlW

T
Tt

]

·





ΛN (t′c)
ΛTl(t

′

c)
ΛTt(t

′

c)



+





ġ
N

(t′c)

ġ
Tl

(t′c)

ġ
Tt

(t′c)



 . (39)

The model (39) consists of 3n∗

S scalar equations for 6n∗

S unknowns. Thus, 3n∗

S

conditions must yet be formulated in order to determine the transferred impulses
ΛN(t′c), ΛTl(t

′

c), ΛTt(t
′

c) and the relative velocities ġ
N

(t′′c ), ġ
Tl

(t′′c ), ġ
Tt

(t′′c ) at the
end of the impact.
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The normal impulse of compression results from integration of the normal force
over the phase of compression:

ΛNi
= lim

t′ci
→t′′ci

t′′Ci
∫

t′
Ci

FNi
dt, i ∈ Ω∗

S . (40)

where, because of the unilateral character of contact constraint, only compressive
forces are possible:

FNi
(t) ≥ 0 ∀ t ∈ [t′ci

, t′′ci
]. (41)

Thus, integrating (40) the normal forces with the property (41) results in non-
negative values of the normal impulses:

ΛNi
≥ 0, i ∈ Ω∗

S . (42)

If the impulse (42) is transferred, then the corresponding contact participates in

the impact and the end of compression is given by ġ
(i)
N = 0. Thus, the allowed

velicities correspond to ġ
(i)
N ≥ 0. The overall behavior can be expressed by the

single complementarity condition [4, 5]:

ΛNi
≥ 0; ġ

(i)
N ≥ 0; ΛNi

ġ
(i)
N = 0; i ∈ Ω∗

S . (43)

The model (39) should be supplemented by Coulomb’s friction law. The tangential
impulse can be derived in a similar way as equation (40), by integration:

ΛTli = lim
t′ci

→t′′ci

t′′Ci
∫

t′
Ci

FTli dt; ΛTti
= lim

t′ci
→t′′ci

t′′ci
∫

t′ci

FTti
dt; i ∈ Ω∗

S . (44)

Now, we state a tangential impact law in the longitudinal direction g
(i)
Tl as [5]:

|ΛTli | ≤ µi ΛNi
; i ∈ Ω∗

S










|ΛTli | < µi ΛNi
⇒ ġ

(i)
Tl = 0 stick state

ΛTli = +µi ΛNi
⇒ ġ

(i)
Tl ≤ 0 slip state

ΛTli = −µi ΛNi
⇒ ġ

(i)
Tl ≥ 0 slip state

(45)

as well as in the transversal direction g
(i)
Tt :

|ΛTti
| ≤ µi ΛNi

; i ∈ Ω∗

S










|ΛTti
| < µi ΛNi

⇒ ġ
(i)
Tt = 0 stick state

ΛTti
= +µi ΛNi

⇒ ġ
(i)
Tt ≤ 0 slip state

ΛTti
= −µi ΛNi

⇒ ġ
(i)
Tt ≥ 0 slip state

(46)

Also, the dissipative character of equations (45) and (46) should be stressed out:

ΛTli ġ
(i)
Tl ≤ 0; ΛTti

ġ
(i)
Tt ≤ 0; i ∈ Ω∗

S . (47)

Thus (45) and (46) should be regarded as independent tangential impact laws in
two orthogonal tangential directions (longitudinal and transversal) which coincide
with Coulomb’s friction law [5] and contain all the main physical effects of dry
friction. With (43), (45) and (46) the missing 3n∗

S impact conditions are found and
the problem is closed in a mathematical sense, i.e. the number of unknows in the
model (40) is equal to its order.
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The dynamic equations (36), (45), (46), together with the corresponding kine-
matic relations (38) of the system, can be stated as an LCP formulation. Because of
the system discontinuity (expressed by eqs. (45) and (46)), due to the non-smooth
stick/slip characteristics, the LCP approach should be applied to both directions -
the normal and the tangential. Initially, this demands decomposition of the friction
characteristics (45) and (46), i.e. the decomposition of tangential characteristics
according to [4, 5]. The basic idea for decomposing friction characteristic is to
formulate each of the tangential constraints by two simultaneously appearing con-
straints. Each of them transfers only one part of it. Both constraints transmit the

tangential force FTli (FTti
) by splitting it into the portions F

(+)
Tl and F

(−)
Tl (F

(+)
Tt

and F
(−)
Tt ) in the positive and negative tangential directions [5], respectively. Then,

the state FTli (FTti
) can be written in the folowing way:

FTli = F
(+)
Tli

− F
(−)
Tli

, i ∈ ΩH1

FTti
= F

(+)
Tti

− F
(−)
Tti

, i ∈ ΩH2

(48)

The values F
(+)
Tl and F

(−)
Tl (F

(+)
Tt and F

(−)
Tt ) are not arbitrary but must be chosen

in such a manner that the tangential force FTli (FTti
) always lies in the convex set

CTli(CTti
) defined in the following way. The admissible values of the tangential

forces FTli and FTti
form the convex sets CTliand CTti

which are bounded by the
values of the normal force [5]:

CTli = {FTli | − µiFNi
≤ FTli ≤ +µFNi

} (49)

CTti
= {FTti

| − µiFNi
≤ FTti

≤ +µFNi
} , i ∈ ΩS

If the tangential forces FTli and FTti
are in the interior of the sets CTliand CTti

, then

the continual sticking appears in both directions (the longitudinal ġ
(i)
Tl = 0, g̈

(i)
Tl = 0

and the transversal ġ
(i)
Tt = 0, g̈

(i)
Tt = 0). Otherwise, the tangential forces FTli

and FTti
lie at the boundaries of CTli and CTti

and allow transition to sliding by

arbitrary values of g̈
(i)
Tl and g̈

(i)
Tt in the oposing directions. This can be ensured by

restricting the values of F
(+)
Tl and F

(−)
Tl (F

(+)
Tt and F

(−)
Tt ) to

F
(+)
Tli

∈ C
(+)
Tli

=
{

F
(+)
Tli

| 0 ≤ F
(+)
Tli

≤ µiFNi

}

,

F
(−)
Tli

∈ C
(−)
Tli

=
{

F
(−)
Tli

| − µiFNi
≤ F

(−)
Tli

≤ 0
}

, i ∈ ΩH1

F
(+)
Tti

∈ C
(+)
Tti

=
{

F
(+)
Tti

| 0 ≤ F
(+)
Tti

≤ µiFNi

}

,

F
(−)
Tti

∈ C
(−)
Tti

=
{

F
(−)
Tti

| − µiFNi
≤ F

(−)
Tti

≤ 0
}

, i ∈ ΩH2

(50)

For each of the new variables F
(+)
Tl and F

(−)
Tl (F

(+)
Tt and F

(−)
Tt ) the connections to

the tangential relative acceleration g̈
(i)
Tl (g̈

(i)
Tt ) should be defined in order to bring

the system to the LCP formulation. In Figure 3.1 the decomposition of the friction
characteristic (the longitudinal commponent) is presented according to [5]. Similar
graphs are obtained for the characteristic in the transversal direction but they are
not depicted separately.

The decomposition shown in Figure 3.1 enables the LCP formulation by using
the resulting inequlities and complementarity conditions, together with the dynamic
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equations derived previously. Following the decomposition procedure shown in Fig-
ures 3.1c and 3.1d one obtains [5]:

g̈Tli = z+
i − g̈−Tli

g̈Tli = g̈+
Tli

− z−i
i ∈ ΩH1

F
(+)
Tl0i

= µiFNi
− F

(−)
Tli

F
(−)
Tl0i

= µiFNi
− F

(+)
Tli

(51)

Similar relations can also be written for the accelerations and tangential forces
in the transversal direction. The physical meaning of the auxilary variables z+

i

and z−i is obvious by this set of equations. They denote just the positive as well
as the negative parts of accelerations, and they have been introduced merely for
the reason of distinctition. From (51), the following equivalencies hold: z+

i =

g̈+
Tli
, z−i = g̈−Tli

. The terms F
(+)
Tl0i

and F
(−)
Tl0i

are called friction saturations (in the

longitudinal direction) and stand for the differences of the maximal transferable
and actual tangential forces. When they vanish, a transition to sliding is possible.
Finally, the complementarity conditions, that are presented in Figure 3.1d, can be
defined in the following way:

iNg&&

iNFO

a)

O

iTlg&&

iTlF

iNi Fm+
iNi Fm-

-+ +=
iii T lT lT l CCC

b)

O

iTlg&&

iNi Fm+

O

iTlg&&

+

iTlC

-

iTlC

+

iTlF

-+ +=
iii TlTlTl FFF

iNi Fm-

-

iTlF

c)

OO +

iTlF

O
iNi Fm+

O +

iTlF

iNi Fm-

-

iTlF

+
iz

-
iz

+

iTlg&&

-

iTlg&&

-

iTlF

d)

Figure 7. a) Complementarity of normal contacts; b) Friction
characteristics during contact; c), d) Decomposition of the friction
characteristic in two steps [5].
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g̈−Tli
≥ 0; F−

Tli
≥ 0; g̈−Tli

F−

Tli
= 0

g̈+
Tli

≥ 0; F+
Tli

≥ 0; g̈+
Tli
F+

Tli
= 0

i ∈ ΩH1

F+
Tl0i

≥ 0; z+
i ≥ 0; F+

Tl0i
z+

i = 0

F−

Tl0i
≥ 0; z−i ≥ 0; F−

Tl0i
z−i = 0

(52)

The set of relations (52) describes in full the decomposed friction characteristics
which correspond to four unilateral constraints. Equations (48)-(52) have to be
used for each of the potentially sticking contacts i ∈ ΩH1

.
Now, the impact model is fully determined by the corresponding kinetics (36) and

kinematics equation (38) of biped locomotion system, the impact law in the normal
direction (43), and the tangential impact characteristics (45) and (46). In order to
determine the model unknowns (the transferred impact impulses ΛN(t′c), ΛTl(t

′

c),
ΛTt(t

′

c), as well as the impact velocities ġ
N

(t′′c ), ġ
Tl

(t′′c ), ġ
Tt

(t′′c )) the LCP formu-

lation will be applied [4, 5]. For that purpose, because of the non-smoothness and
discontinuity of the friction dynamics, the decomposition of the tangential relative
velocities ġ

Tl
(t′′c ), ġ

Tt
(t′′c ) and tangential impact impulses ΛTl(t

′

c), ΛTt(t
′

c) is per-

formed in a way described by (48)-(52) [5]. Finally, the impact model of biped
gait is defined in an LCP form. For establishing equations for the LCP, (48), (51)
and (52) should be integrated over the impact interval |deltat. Then the following
relations are obtained:

ΛTli = Λ
(+)
Tli

− Λ
(−)
Tli
, i ∈ IH1

ġTli = z+
i − ġ−Tli

; Λ
(+)
Tl0i

= Λ
(−)
Gi

− Λ
(−)
Tli

; i ∈ ΩH1

ġTli = ġ+
Tli

− z−i ; Λ
(−)
Tl0i

= Λ
(+)
Gi

− Λ
(+)
Tli

;

(53)

and

ġ−Tli
≥ 0; Λ

(−)
Tli

≥ 0; ġ−Tli
Λ

(−)
Tli

= 0

ġ+
Tli

≥ 0; Λ
(+)
Tli

≥ 0; ġ+
Tli

Λ
(+)
Tli

= 0
i ∈ ΩH1

Λ
(+)
Tl0i

≥ 0; z+
i ≥ 0; Λ

(+)
Tl0i

z+
i = 0

Λ
(−)
Tl0i

≥ 0; z−i ≥ 0; Λ
(−)
Tl0i

z−i = 0

(54)

All tangential impulses ΛTl of the impact contacts i ∈ Ω∗

S can be defined as a vector
difference:

ΛTl = Λ
(+)
Tl − Λ

(−)
Tl ;

Λ
(+)
Tl =

[

Λ
(+)
Tl1

. . .Λ
(+)
Tln∗

S

]T

; Λ
(−)
Tl =

[

Λ
(−)
Tl1

. . .Λ
(−)
Tln∗

S

]T (55)

Then, taking into account equations (36) and (38), the following LCP form of the
relation can be derived:

[

ġ
C

ΛT0C

]

=

[

WT
S H

−1WS IT
S

NS − IS 0

]

·

[

ΛC

zC

]

+

[

ġ
A

0

]

[

ġ
C

ΛT0C

]

≥ 0;

[

ΛC

zC

]

≥ 0;

[

ġ
C

ΛT0C

]T

·

[

ΛC

zC

]

= 0;

(56)
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where the matrices and vectors used have the forms:

ġ
C

=













ġ
N

+ġ
Tl

+ġ
Tt

−ġ
Tl

−ġ
Tt













; ġ
A

=













ġ
N

ġ+
Tl

ġ+
Tt

ġ−
Tl

ġ−
Tt













; zC =

[

z−C
z+

C

]

=









ġ−
Tl

ġ−
Tt

ġ+
Tl

ġ+
Tt









; ΛC =















ΛN

Λ
(+)
Tl

Λ
(+)
Tt

Λ
(−)
Tl

Λ
(−)
Tt















;

WS =













WT
N

+WT
Tl

+WT
Tt

−WT
Tl

−WT
Tt













; IT
S =













0 0 0 0
E 0 0 0
0 E 0 0
0 0 E 0
0 0 0 E













; (57)

NS − IS =









µS −E 0 0 0
µS 0 −E 0 0
µS 0 0 −E 0
µS 0 0 0 −E









;

ΛT0C
=











Λ
(−)
Tl0

Λ
(−)
Tt0

Λ
(+)
Tl0

Λ
(+)
Tt0











=

[

Λ
(−)
T0C

Λ
(+)
T0C

]

= (NS − IS) · ΛC

E ∈ R
n∗

S×n∗

S is a unit matix and µS ∈ R
n∗

S×n∗

S is a diagonal matrix consisting of
the coefficients of friction µi. Dimensions of the vectors and matrices used in (56)

are: ġN , ġA,ΛC ∈ R
5n∗

S×1, WS ∈ R
N×5n∗

S , ΛT0C
, zC ∈ R

4n∗

S×1.
Relation (56) represents the standard LCP formulation of the impact law that

can be written in a general form:

y = Ax+ b; y ≥ 0; x ≥ 0; yTx = 0
y, x ∈ R5 ns

(58)

Its solution y ∈ R
5nS , x ∈ R

5nS contains all unkonown contact impulses and
velocities during the impact. Lemke’s algorithm [8] is here used to solve can be
used (58). This robust algorithm ensures at least the existence of solution.

4. Modeling of foot contact using the impedance model. The impedance
model presented in this section is usually implemented to describe the foot contact
during the biped locomotion .

Generally, under the notion “robotic dynamic environment” it can be assumed
both the ground support on which the locomotion mechanism moves and elastic
footpad of the supporting leg. During the walk, the interactive forces and moments
of dynamic environment reaction are transferred onto the entire mechanism struc-
ture. The 3D-model of environment used in our numerical simulation examples
is presented in Figure 4. It can be considered as a spring-mass-damper mechanic
system, while the model of dynamic environment is assumed to be composed of
rigid ground support and elastic footpads. The impedance model, presented here,
consisting of four vertical units of a linear spring and a non-linear damper at the
corners i = 1, ..., 4 ( 4) was elaborated in [9]. The two pairs of horizontal units
consisting of a linear spring and a linear damper at the heel and toes, aligned along
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the walking and lateral directions, are also included in the 6-DOF model (Figure
4).. The nonlinear vertical springs prevent the elastic pad from being sqeezed more
than is its thickness. The nonlinear damper model is used to describe accurately
the impacts at the foot landing, as suggested in . The inertia effects, taking into
account the engaged mass of the footpad, are included in the model, too. Note
also that this model of elastic pad also allows its rotational deformation due to the
moment applied at the foot, as well as its asymmetric vertical deformation. As a
result, it is possible for the foot in contact with the ground to move and rotate in
any direction.

Figure 8. Impedance model of a foot contact.

The resultant vertical reaction force Fz generated at the foot in contact with the
ground can be determined from the following relations:

Fz =

4
∑

i=1

Fzi
(59)

where

Fzi
=











mi(δi)δ̈i + kz(δi)δi(
3

2
αδ̇i + 1), when δ̇i > 0, δi > 0

kz(δi)δi when δ̇i < 0, δi > 0
0 otherwise.

(60)

where δi is the amount of deformation at the corner of the elastic pad (Figure
4), α is a constant which defines the relation between the coefficient of restitution
and the impact velocity, tp is the thickness of the elastic pad, mi = m0

δi

4tp
is the

engaged/compressed mass of the elastic pad and kz(δi) is the stiffness associated
with the spring model of the pad in the vertical direction defined by

kz(δi) = kz0[1 + 0.1tan3(
π(δi)

2tp
)], for 0 < δi < tp

and Note that the damping force generated at the corner i of the elastic pad becomes
zero when δ̇i < 0 and δi > 0. Under the assumption that the elastic pad is in contact
with the ground at the pad location i, the horizontal forces Fx and Fy generated
by the elastic pad are represented by:

Fx =
4

∑

i=1

Fxi
(61)

where

Fxi
=

{

−miẍi − bxiẋi − kxi(xi − x0i) stick state
−µxiFyi

sign(ẋi) slip state.
(62)
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and

Fy =

4
∑

i=1

Fyi
(63)

where

Fyi
=

{

−miÿi − byiẏi − kyi(yi − y0i) case of stick friction
−µyiFyi

sign(ẏi) case of slip.
(64)

where ẋi and ẏi are displacement rates of the corner i of the footpad in the x−
and y−directions; x0i and y0i are the horizontal foot positions used to compute the
horizontal forces due to the horizontal deformations of the elastic pad. They are
defined as the positions of pad location i at the moment of the initial pad contact
with the ground; xi − x0i and yi − y0i are the corresponding elastic deformations of
the footpad in the observed directions; kxi and kyi are the stiffnesses associated with
the spring model of the pad in the horizontal directions at the location i; bxi and
byi represent the damping associated with the model of the pad in the horizontal
directions at the location i; µxi and µyi are Coulomb friction coefficients in the
horizontal directions. The stick state exists in the quasi-static case when the foot
displacement rate is small or equal to zero. Then, only the elastic deformation of
elastic pad appears in the contact area. Coulomb friction appears as a consequence
of the foot slippage over the supporting surface.

Ground reaction moments of the robot foot can be determined from the following
relations:

Mx = (Fz1
+ Fz3

− Fz2
− Fz4

)
wp

2
(65)

My = (−Fz1
+ Fz3

− Fz2
+ Fz4

)
lp
2

(66)

Mz = −(Fz1
+ Fz4

)
ωp

2
+ Fy1

− Fy4
)
lp
2

(67)

where wp are lp the width and length of the elastic pad.

5. Results and comments. Two contact models (LCP formulation and impedance
model) have been implemented. The simulations have been performed under the
same conditions. Note that for the simulation of the kinematic and dynamic models
follow the lines of [10]. A forward velocity v = 1m/s, a step seize s = 0.75m and
an average lifting height of the robot foot h = 0.15m were introduced. For control
of the dynamically balanced biped gait of robot mechanism, the impedance control
with the complementarity ZMP compensator is used [11]. The structure as well as
the control parameters used in simulation experiments are same for both simulation
tests. In order to validate simulation results, the corresponding experiments have
been performed using a VICON caption motion studio equipment with the appro-
priate software package [12] for processing measurement data. Monitoring of the
position markers during the motion was performed using six VICON high-accuracy
infra-red cameras with the recording frequency of 200 [Hz]. Reactive forces of the
foot impact/contact with the ground were measured on the force platform with a
recording frequency of 1.0 [Ghz].

Both models of contact/impact forces applied in the simulation experiments show
good similarity with experimental measurements (presented in Figures 9 and 2)
performed in the capture motion studio. Foot sole cycloids obtained for both models
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-500

0

500

1000

F
o

rc
e

 [
N

]

Ground reaction forces of the left foot

Ground reaction forces of the right foot

-500

0

500

1000

F
o

rc
e

 [
N

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [s]
2.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [s]
2.0

Fx

Fy

Fz

Fx

Fy

Fz

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Xzmp [m]

Y
zm

p
 [
m

]

Foot prints and the ZMP hodograph in the support plane

Left foot

Right foot

ZMP

-0.05

0

0.05

0.1

0.15

0.2

p
o

si
tio

n
 [

m
]

Foot sole cycloids - right and left

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time [s]

Heel

Toe

a)

b)

c)

Figure 12. Simulation results obtained for the use of the
impedance model of contact dynamics: a) feet cycloids, b) ground
reaction forces in the sagital Fx, lateral Fy and vertical direction
Fz, c) ZMP hodograph.



IMPACT DYNAMICS IN BIPED LOCOMOTION ANALYSIS 503

considered are presented in Figures 11a and 12a. It is evident that impedance
model of foot-ground contact reactions takes into account the real deformations of
the supporting surface due to its elasticity (Fig. 12a). In this case it is just few
millimeters.

Corresponding ground reaction forces are shown in Figures 11b and 12b. LCP
model ensures better smoothness of the reactive forces (Figure 11b) while impedance
model takes into account dynamics of the environment (supporting surface) and
because of that the obtained forces have certain variations of the amplitudes.

ZMP hodographs in both simulation cases track the trajectories of the biped feet,
i.e. corresponding dynamics of the imposed biped gait (Figures 11c and 12c). In
order to maintain the dynamic balance of the biped, the ZMP always stays inside
the supporting polygone.

The impact modelling based on LCP formulation (and variational inequalities
in general) is more accurate for non-smooth multi-point impact/contact dynamics
of biped gait and analysis of system stability. The implemented formulation has
at least one solution [13] and the Lemke’s algorithm is suitable for the numerical
implementation. In the other hand, this formulation is more theoretical and re-
quires from the engineering community more mathematical background especially
the numerical implementation is quite technical.

The impedance model is rather more practical and oriented towards satisfying
engineering aspects of solving impact problems for engineering problems.
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