Loading [Contrib]/a11y/accessibility-menu.js

"Traveling wave'' solutions of Fitzhugh model with cross-diffusion

  • Received: 01 May 2007 Accepted: 29 June 2018 Published: 01 March 2008
  • MSC : Primary: 34C20, 34C23; Secondary: 92C99.

  • The FitzHugh-Nagumo equations have been used as a caricature of the Hodgkin-Huxley equations of neuron FIring and to capture, qualitatively, the general properties of an excitable membrane. In this paper, we utilize a modified version of the FitzHugh-Nagumo equations to model the spatial propagation of neuron firing; we assume that this propagation is (at least, partially) caused by the cross-diffusion connection between the potential and recovery variables. We show that the cross-diffusion version of the model, be- sides giving rise to the typical fast traveling wave solution exhibited in the original ''diffusion'' FitzHugh-Nagumo equations, additionally gives rise to a slow traveling wave solution. We analyze all possible traveling wave solutions of the model and show that there exists a threshold of the cross-diffusion coefficient (for a given speed of propagation), which bounds the area where ''normal'' impulse propagation is possible.

    Citation: F. Berezovskaya, Erika Camacho, Stephen Wirkus, Georgy Karev. 'Traveling wave'' solutions of Fitzhugh model with cross-diffusion[J]. Mathematical Biosciences and Engineering, 2008, 5(2): 239-260. doi: 10.3934/mbe.2008.5.239

    Related Papers:

    [1] Tong Li, Zhi-An Wang . Traveling wave solutions of a singular Keller-Segel system with logistic source. Mathematical Biosciences and Engineering, 2022, 19(8): 8107-8131. doi: 10.3934/mbe.2022379
    [2] Xiao-Min Huang, Xiang-ShengWang . Traveling waves of di usive disease models with time delay and degeneracy. Mathematical Biosciences and Engineering, 2019, 16(4): 2391-2410. doi: 10.3934/mbe.2019120
    [3] M. B. A. Mansour . Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences and Engineering, 2009, 6(1): 83-91. doi: 10.3934/mbe.2009.6.83
    [4] Danfeng Pang, Yanni Xiao . The SIS model with diffusion of virus in the environment. Mathematical Biosciences and Engineering, 2019, 16(4): 2852-2874. doi: 10.3934/mbe.2019141
    [5] Haiyan Wang, Shiliang Wu . Spatial dynamics for a model of epidermal wound healing. Mathematical Biosciences and Engineering, 2014, 11(5): 1215-1227. doi: 10.3934/mbe.2014.11.1215
    [6] Tiberiu Harko, Man Kwong Mak . Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences and Engineering, 2015, 12(1): 41-69. doi: 10.3934/mbe.2015.12.41
    [7] Xixia Ma, Rongsong Liu, Liming Cai . Stability of traveling wave solutions for a nonlocal Lotka-Volterra model. Mathematical Biosciences and Engineering, 2024, 21(1): 444-473. doi: 10.3934/mbe.2024020
    [8] Ran Zhang, Shengqiang Liu . Traveling waves for SVIR epidemic model with nonlocal dispersal. Mathematical Biosciences and Engineering, 2019, 16(3): 1654-1682. doi: 10.3934/mbe.2019079
    [9] Maryam Basiri, Frithjof Lutscher, Abbas Moameni . Traveling waves in a free boundary problem for the spread of ecosystem engineers. Mathematical Biosciences and Engineering, 2025, 22(1): 152-184. doi: 10.3934/mbe.2025008
    [10] José Luis Díaz Palencia, Abraham Otero . Modelling the interaction of invasive-invaded species based on the general Bramson dynamics and with a density dependant diffusion and advection. Mathematical Biosciences and Engineering, 2023, 20(7): 13200-13221. doi: 10.3934/mbe.2023589
  • The FitzHugh-Nagumo equations have been used as a caricature of the Hodgkin-Huxley equations of neuron FIring and to capture, qualitatively, the general properties of an excitable membrane. In this paper, we utilize a modified version of the FitzHugh-Nagumo equations to model the spatial propagation of neuron firing; we assume that this propagation is (at least, partially) caused by the cross-diffusion connection between the potential and recovery variables. We show that the cross-diffusion version of the model, be- sides giving rise to the typical fast traveling wave solution exhibited in the original ''diffusion'' FitzHugh-Nagumo equations, additionally gives rise to a slow traveling wave solution. We analyze all possible traveling wave solutions of the model and show that there exists a threshold of the cross-diffusion coefficient (for a given speed of propagation), which bounds the area where ''normal'' impulse propagation is possible.


  • This article has been cited by:

    1. Evgeny P. Zemskov, Mikhail A. Tsyganov, Werner Horsthemke, Oscillatory multipulsons: Dissipative soliton trains in bistable reaction-diffusion systems with cross diffusion of attractive-repulsive type, 2020, 101, 2470-0045, 10.1103/PhysRevE.101.032208
    2. Argha Mondal, Ranjit Kumar Upadhyay, Arnab Mondal, Sanjeev Kumar Sharma, Dynamics of a modified excitable neuron model: Diffusive instabilities and traveling wave solutions, 2018, 28, 1054-1500, 113104, 10.1063/1.5048119
    3. Connie L. McNeely, Erika Camacho, Conceptualizing STEM Workforce Migration in the Modern World Polity, 2010, 1556-5068, 10.2139/ssrn.1593393
    4. Tian Xiang, On a class of Keller–Segel chemotaxis systems with cross-diffusion, 2015, 259, 00220396, 4273, 10.1016/j.jde.2015.05.021
    5. Evgeny P. Zemskov, Mikhail A. Tsyganov, Werner Horsthemke, Multifront regime of a piecewise-linear FitzHugh-Nagumo model with cross diffusion, 2019, 99, 2470-0045, 10.1103/PhysRevE.99.062214
    6. Evgeny P. Zemskov, Mikhail A. Tsyganov, Werner Horsthemke, Oscillatory pulse-front waves in a reaction-diffusion system with cross diffusion, 2018, 97, 2470-0045, 10.1103/PhysRevE.97.062206
    7. B Z Essimbi, A Stöhr, I Jäger, D Jäger, Neuronlike impulses in a travelling wave structure loaded with resonant tunneling diodes and air bridges, 2019, 3, 2399-6528, 085010, 10.1088/2399-6528/ab2661
    8. Faina Berezovskaya, 2016, Chapter 1, 978-3-319-31321-4, 1, 10.1007/978-3-319-31323-8_1
    9. Evgeny P. Zemskov, Mikhail A. Tsyganov, Klaus Kassner, Werner Horsthemke, Nonlinear waves in a quintic FitzHugh–Nagumo model with cross diffusion: Fronts, pulses, and wave trains, 2021, 31, 1054-1500, 033141, 10.1063/5.0043919
    10. Evgeny P. Zemskov, Mikhail A. Tsyganov, Genrich R. Ivanitsky, Werner Horsthemke, Solitary pulses and periodic wave trains in a bistable FitzHugh-Nagumo model with cross diffusion and cross advection, 2022, 105, 2470-0045, 10.1103/PhysRevE.105.014207
    11. G. Gambino, M. C. Lombardo, R. Rizzo, M. Sammartino, Excitable FitzHugh-Nagumo model with cross-diffusion: long-range activation instabilities, 2023, 0035-5038, 10.1007/s11587-023-00814-9
    12. Daniel Cebrián-Lacasa, Pedro Parra-Rivas, Daniel Ruiz-Reynés, Lendert Gelens, Six decades of the FitzHugh–Nagumo model: A guide through its spatio-temporal dynamics and influence across disciplines, 2024, 1096, 03701573, 1, 10.1016/j.physrep.2024.09.014
    13. Burcu Gürbüz, Aytül Gökçe, Mahmut Modanlı, A comprehensive numerical investigation of a coupled mathematical model of neuronal excitability, 2025, 0020-7160, 1, 10.1080/00207160.2025.2462748
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2414) PDF downloads(518) Cited by(13)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog