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Abstract. The FitzHugh-Nagumo equations have been used as a caricature
of the Hodgkin-Huxley equations of neuron firing and to capture, qualitatively,
the general properties of an excitable membrane. In this paper, we utilize
a modified version of the FitzHugh-Nagumo equations to model the spatial
propagation of neuron firing; we assume that this propagation is (at least,
partially) caused by the cross-diffusion connection between the potential and
recovery variables. We show that the cross-diffusion version of the model, be-
sides giving rise to the typical fast traveling wave solution exhibited in the
original “diffusion” FitzHugh-Nagumo equations, additionally gives rise to a
slow traveling wave solution. We analyze all possible traveling wave solutions
of the model and show that there exists a threshold of the cross-diffusion coeffi-
cient (for a given speed of propagation), which bounds the area where “normal”
impulse propagation is possible.

1. Introduction. Hodgkin, Huxley, and Katz in the 1940s explored experimen-
tally and mathematically the nature of nerve impulses. Their work revealed that
the electrical pulses across the membrane arise from the uneven distribution be-
tween the intracellular fluid and the extracellular fluid of potassium (K+), sodium
(Na+), and protein anions (see [34] for details). This entire process of rapid change
in potential from threshold to peak reversal and then back to the resting potential
level is called an action potential, impulse, or spike (see schematic diagram in Fig. 1).
The process was mathematically investigated by Hodgkin and Huxley in 1952 with
a four-variable model [19]. In 1961 FitzHugh proposed a simplified two-variable
model of an excitable membrane, which made it possible to illustrate the various
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physiological states involved in an action potential (such as resting, active, refrac-
tory, enhanced, and depressed) in the phase plane (see [12]). The FitzHugh system,
although a caricature of the Hodgkin-Huxley four equations, captures much of the
same dynamical behavior and, in particular, demonstrates the spike-like behavior
(see Section 2 and Figs. 2, 3, 7, 8).

Figure 1. Neuron spike in the (time-Potential) plane obtained
from experiments of neuron firing (see [12], [34] for details).

A more realistic model is one that depends on both space and time since electric
currents cross the membrane of the cell and move along its axon lengthwise inside
and outside. This mechanism makes it possible for electrical signals to be trans-
mitted over long distance and thus propagate throughout the membrane without
ever weakening or decreasing their initial strength. A mathematical model of the
diffusion of current potential was first proposed and studied by FitzHugh in 1961,
1969 (see [12], [13]), Nagumo et al. in 1962 (see [28]) and many others.

Recent models have been proposed where the spatial solutions are conditioned
by the effects of cross-diffusion “control” or “interactions” between components of
the system ([27], [31], [25], [7], [5]).

Motivated by these works, we modified the FitzHugh model to include a cross-
diffusion connection between the potential and recovery variables. We hypothesize
that because of the semiconductor nature of the nerve membrane, the cross-diffusion
regulation plays an important (perhaps crucial) role in the spatial spreading of
potential ([29], [30], [37]). This version of the model will provide an avenue for
investigating successful propagation of an excitable neuron but also propagation
failures, which are extremely important for many applications (see, for example,
[14], [15], [18] and Section 4 below). In this work we explore the changes of the
characteristics of the spatial propagation of nerve impulses brought by changes
in the velocity of propagation and intensity of the cross-diffusion regulation. In
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particular, we are interested in the conditions of “normal” neuron firing propagation
and investigate its possible violations. Some preliminary results were obtained in
[3], [5].

The paper is organized in the following manner. Section 2 contains a brief de-
scription of local neuron dynamics within the framework of the FitzHugh model
and the bifurcation portrait of the model. A cross-diffusion modification of the
FitzHugh model aimed at providing an explanation of spatial modes like “traveling
waves” is contained in Section 3. We show that fast and slow traveling waves can
appear with respect to parameter values and follow their dependence with a bi-
furcation analysis of corresponding wave systems; we show also that the “traveling
spike” appears only before some threshold value of the cross-diffusion coefficient.
Section 4 contains the discussion of obtained results. Proofs of the statements of
Section 3 are given in the Appendix.

2. The FitzHugh equations as a local membrane model. The original model
of FitzHugh describing the dynamics of the physiological states of a nerve membrane
contains the membrane potential variable, P , and the recovery variable, Q [12]. The
variable P shares the properties of both the membrane potential and excitability and
thus describes the dynamics of the rising phase of neuron firing. The variable Q is
responsible for accommodation and refractoriness and thus represents the dynamics
of the falling phase of the action potential. The equations are given by

Pτ = I −Q− P 3/3 + P, (1)
Qτ = ρ(a + P − bQ),

where I is the stimulating current, ρ, a, and b are parameters of the system.
FitzHugh in [12] and [13] described some types of qualitative dynamics of this
system. The complete phase-parameter analysis of the FitzHugh model was given
in [38]. With the change of variables and parameters

P → P
√

3, Q → Q
√

3 + I, τ = t/(ρb), k1 = 1/b, ε = ρb, k2 = (I − a/b)/
√

3 (2)

model (1) was reduced to the form1

εPt = −P 3 + P −Q ≡ F1(P, Q)
Qt = k1P −Q− k2 ≡ F2(P,Q), (3)

which contains only three parameters: ε > 0, k1 > 0 and k2. Volokitin and Treskov
[38] investigated bifurcations of (3) depending on these parameters. Additionally, it
was shown in [20] that the bifurcation of codimension 4 with symmetry, “3-multiple
neutral singular point with the degeneration,” is realized in the vector field defined
by system (3) in a vicinity of the parameter point M (k1 = 1, k2 = 0, ε = 1). Some
global stability results as well as the boundedness of solutions were proved in [23].

The system (3) has from one (a nonsaddle; i.e., a node or a spiral or center)
up to three (two non-saddles and a saddle) singular points (P ∗, Q∗) where P ∗ and
Q∗ are common roots of F1(P, Q) and F2(P, Q). A two-multiple singular point is a
saddle or degenerate saddle. A three-multiple singular point O(0, 0) arises at k1 = 1,
k2 = 0; it is a degenerated spiral sink if ε 6= 1 [5]. The system can have also limit
cycles. They can appear or disappear by three different ways: the Andronov-Hopf

1Volokitin and Treskov in [38] used the equivalent (for b 6= 0) change of variables: P → −P
√

3,

Q → Q
√

3− I, τ = t/ε, k1ε = ρ, bk1 = 1, ak1 = −( k2

√
3 + I).
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subcritical bifurcation; the saddle-node bifurcation of limit cycles; the homoclinic
bifurcation of a pair of separatrices of a saddle. In two former cases the cycle can
contain a single singular point or three singular points. For the sake of brevity, we
call a cycle “small” if it contains a unique singular point and “large” if it contains
three singular points. The results presented in the following theorem were proven
in [38].

Theorem 2.1. (i) The space of parameters (k1, k2, ε) is subdivided into 21 domains
of topologically different phase portraits of system (3). The cut of the complete
(k1, k2, ε)-parameter portrait to the plane (k1, k2) is topologically equivalent to the
diagram presented in Figures 2a, 3 for arbitrary fixed 0 < ε < 1 and to the diagram
presented in Figures 2b, 3 for arbitrary fixed ε > 1.

The boundary surfaces in the parameter space correspond to the following bifur-
cations in system (3):

S1, S2: appearance/disappearance of a pair of singular points on the phase plane;
H−

1 , H−
2 : change of stability of each of the nonsaddle singular points in the

Andronov-Hopf subcritical bifurcation;
H+

1 , H+
2 : change of stability of each of the nonsaddle singular points in the

Andronov-Hopf supercritical bifurcation;
D: appearance/disappearance of a pair of limit cycles;
P1, P2: appearance/disappearance of a small limit cycle in one of two homo-

clinics of the saddle point;
R1, R2: appearance/disappearance of a large limit cycle in one of two homoclin-

ics of the saddle point.
(ii) Boundaries corresponding to the local bifurcations of the singular points in

the parametric space {k1, k2, ε} are described by the following equations:
1) Surfaces

S1: k2 = 2
√

(1− k1)3/27, S2: k2 = −2
√

(1− k1)3/27, 0 ≤ k1 ≤ 1,

H1: k2 = (2 + ε− 3k1)
√

(1− ε)/27, k1 < ε ≤ 1,
H2: k2 = −(2 + ε− 3k1)

√
(1− ε)/27, k1 < ε ≤ 1;

2) Lines
SS: k1 = 1, k2 = 0, BT1, BT2: k1 = ε, k2 = ±2

√
(1− ε)3/27, 0 < ε ≤ 1,

DH1: k1 = 2− ε, k2 = 4(1− ε)
√

(1− ε)/27,
DH2: k1 = 2− ε, k2 = −4(1− ε)

√
(1− ε)/27, 0 < ε ≤ 1.

Remark 1. The boundary surfaces in the parameter space (k1, k2, ε) correspond
to the lines at the (k1, k2)-cut in Figure 2. Surfaces 1) correspond to bifurca-
tions of codimension 1; lines 2) correspond to bifurcations of codimension 2. The
curves of intersections of S1, H 2 and S2, H 1 as well as the curve of intersection
of H−

1 and H−
2 correspond to bifurcations of codimension “1+1.” The parame-

ter and phase portraits possess certain symmetry: system (3) is symmetric under
(P, Q, k1, k2, ε) → (−P,−Q, k1,−k2, ε); in particular, it is sufficient to study the
systems for k2 ≥ 0. Because of this fact, certain phase portraits are given by num-
ber and index a, but the respective symmetric phase portraits have no number in
the parameter portrait.

Let us emphasize that in the framework of the FitzHugh model the spike-regime
(see Fig. 1) is the P -component of the trajectory {P (t), Q(t)} corresponding to
the large separatrix loop (which contains two singular points inside) in the phase
plane. This loop is realized with parameter values 0 < k1 < 1, k2, 0 < ε < 1
belonging to the boundary R1 of the parameter portrait (see Fig. 2). The line R1
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Figure 2. Schematic parameter portrait of FitzHugh model (3)
and the fast wave systems (7+) of FitzHugh cross-diffusion model
(for velocities C2 > Dk1/ε); a gives the ε-cut for 0 < ε < 1,
and b gives the ε-cut for ε > 1. Boundaries of domains: S1 and
S2, saddle-node (fold) bifurcations in the phase plane; H−

1 and
H−

2 , the Andronov-Hopf subcritical bifurcations, H +
1 and H +

2 , the
Andronov-Hopf supercritical bifurcations; D, saddle-node limit cy-
cle bifurcation; P1, P2, homoclinic bifurcations of the saddle point
where separatrix loop contains a single non-saddle inside; R1, R2,
homoclinic bifurcations of the saddle point where separatrix loop
contains two non-saddles inside. See Theorems 2.1, 3.1(i) for the
complete description of the boundaries of the domains. Boundary
R2 corresponds to the neuron spike (Fig. 1). Refer to Figure 3 for
the phase portraits in each domain.

adjacent domains 5a, 6a, 8a and 7a at the parametric portrait correspond to the
most important regimes of our model. In domains 5a and 6a, system (3) is bistable:
they have simultaneously a stable singular point and a stable large limit cycle (see
Fig. 3). In domain 5a the basins of the stable regimes are divided by the unstable
large limit cycle, which is its common boundary; in domain 6a the basins are more
complex and are defined by the configuration of separatrices. In domains 7a and
8a system (3) is 3-stable: they have simultaneously two stable singular points and
a stable large limit cycle (see Fig. 3). In domain 8a the basins of the large limit
cycle and stable points are divided by the unstable large limit cycle (similarly to
5a); basins of stable singular points placed inside this limit cycle are divided by
the unstable small limit cycle and the separatrices. Basins in domain 7a are more
complex and also are defined by the configuration of separatrices (similarly to 6a)
and by the unstable small limit cycle.

3. Cross-diffusion model of a transmembrane potential.
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Figure 3. Schematic phase portraits corresponding to parameter
domains from Fig. 2. The stable modes, periodic oscillations and
equilibrium, are realized in domains 5a, 6a, 7a, 8a, 9, 10 adjacent
to the boundary R1.

3.1. Extending and modifying FitzHugh model. In this section, we propose
an extension of the FitzHugh spatial model to include the implicit (although hy-
pothetical) cross-diffusion mechanism of the spatial propagation of the firing pro-
cess of the neuron. The simplest version of the “space-distributed” FitzHugh -
Nagumo model (FHN-model) for transmembrane potential accounts for the “cur-
rent” W1(t, x) along the axon due to the gradient of the potential in the point x,
so that W1(t, x) ∼ −Px (see [13], [28], [26, Ch. 6]). A more sophisticated approach
may take into account another component of the current, W1(t, x) ∼ −Qx, which
defines the current against the gradient of the recovery variable. The total current
W (t, x) is then the sum of both components, and Pt ∼ −Wx (under zero local dy-
namics). Neglecting the possible currents of the recovery variable, we arrive at the
model

εPt = −P 3 + P −Q + DQxx + σPxx, (4)
Qt = k1P −Q− k2,

where t is time, x is a one-dimensional space variable and nonnegative constants
D, σ are the cross-diffusion and diffusion coefficients, respectively. The FHN-model
corresponds to the “diffusion” version of system (4) with D = 0, σ > 0. Many works
were devoted to the study of its dynamics, and in particular, to the investigation of
“traveling wave” solutions ([17], [11], [32], [9], [33]). A bifurcation approach applied
to the study of traveling impulses and trains (see [24]) revealed that “fast” and
“slow” waves can exist with the same values of “local parameters” ε, k1.

To clarify the role of the spatial distribution of the recovery variable (along the
axon) and the meaning of the cross-diffusion term in the impulse propagation, we
consider a cross-diffusion version of system (4):
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εPt = −P 3 + P −Q + DQxx ≡ F1(P, Q) + DQxx (5)
Qt = k1P −Q− k2 ≡ F2(P, Q).

Mathematically, cross-diffusion equations possess special properties, which facil-
itate their research [40], [3], [5].

3.2. Wave system of the model. In what follows, we explore “traveling wave”
solutions of system (5):

P (x, t) = P (x + Ct) ≡ p(ξ), Q(x, t) = Q(x + Ct) ≡ q(ξ),
where ξ = x + Ct and positive C is the velocity of the wave propagation. It can be
checked that (p(ξ), q(ξ)) satisfy the following two-dimensional “wave system”:

(εC2 −Dk1)/Cpξ = F1(p, q)−DF2(p, q)/C2, (6)
Cqξ = F2(p, q).

Thus, the problem of describing all traveling wave solutions of system (5) and
their rearrangements is reduced to the analysis of phase curves and bifurcations of
solutions of wave system (6), which has the additional parameter C.

Let us denote α = C2/(εC2 − Dk1) and β = sign(α). As we show further, the
behavior of the wave system essentially depends on the sign of the parameter α and
thus we distinguish the cases β =“+” and β =“−.” We change the independent
variable η = ξ/C and then wave system (6) becomes

pη = α(F1(p, q)−DF2(p, q)/C2), (7β)

qη = F2(p, q),
where F1(p, q) = −p3 + p − q, F2(p, q) = k1p − q − k2. This system is defined at
εC2 6= Dk1.

We show that systems (7+) with C >
√

Dk1ε and (7−) with C <
√

Dk1ε
demonstrate qualitatively different behaviors under variations of “local” parameters
ε, k1, k2. In other words, the parabola C2 = Dk1/ε is the boundary between do-
mains of qualitatively different behaviors of wave system (6) in the (D,C)-parameter
plane under fixed values of “local” parameters ε, k1, k2. In what follows we will omit
the symbol β in (7β) when we study the system properties that do not depend on
β.

3.3. Phase-parametric portraits of the wave systems. System (7+) with
C2 > Dk1/ε is called the fast wave system, whereas system (7−) with C2 < Dk1/ε
is called the slow wave system of model (5). For both cases system (7β) evidently
has from one up to three singular points (p*,q* ) where p* and q* are common
roots of F1(p, q) and F2(p, q). Two singular points coincide and form a 2-multiple
point with the parameter values belonging to boundaries S1 and S2 (see Fig. 2 and
Theorem 2.1). Thus, both the fast and slow wave systems have three singularities
inside the curvilinear angle that is formed by S1 and S2, and a single singular point
outside the angle. Note that this unique singular point is a nonsaddle (a node or
spiral) for the fast wave system whereas it is a saddle for the slow one. Inside the
parameter angle the fast wave system has two nonsaddles and a saddle, whereas the
slow one has two saddles and one nonsaddle (see Proposition 3 in the Appendix).
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At k1 = 1, k2 = 0 the points coincide in a 3-multiple singular point O(0, 0) which is
a nonhyperbolic spiral if ε 6= 1 for the fast wave system and a nonhyperbolic saddle
for the slow wave system.

Theorem 3.1. (i) Let C2 > Dk1/ε. For any positive fixed α there exists a neigh-
borhood Ω = Ω(α) of the parameter point (k1 = 1, k2 = 0, ε = 1) in which the space
of parameters (k1, k2, ε) of system (7+) is subdivided into 21 domains of topologi-
cally different phase portraits. The cut of complete (k1, k2, ε)-parameter portrait to
the plane (k1, k2) is topologically equivalent to the diagrams presented in Figures 2a
and 3 for arbitrary fixed 0 < ε < 1 and to the diagram presented in Figures 2b and
3 for arbitrary fixed ε > 1.

The boundary surfaces in the parameter space correspond to the following bifur-
cations in system (7+):

S1, S2: appearance/disappearance of a pair of singular points in the phase plane;
H−

1 , H−
2 : change of stability of each of the non-saddle singular points in the

Andronov-Hopf subcritical bifurcation;
H+

1 , H+
2 : change of stability of each of the non-saddle singular points in the

Andronov-Hopf supercritical bifurcation;
D: appearance/disappearance of a pair of limit cycles;
P1, P2: appearance/disappearance of a small limit cycle in one of two homo-

clinics of the saddle point;
R1, R2: appearance/disappearance of a large limit cycle in one of two homoclin-

ics of the saddle point.
(ii) Let C2 < Dk1/ε. For any negative fixed α there exists a neighborhood

Ω = Ω(α) of the parameter point (k1 = 1, k2 = 0, ε = 1) in which the space of
parameters (k1, k2, ε) of system (7−) is subdivided into 10 domains of topologically
different phase portraits. The cut of complete (k1, k2, ε)-parameter portrait to the
plane (k1, k2) is topologically equivalent to the diagram presented in Figures 4a and
5 for arbitrary fixed positive 0 < ε < 1 and in Figures 4b and 5 for arbitrary fixed
ε > 1.

The boundary surfaces in the parameter space correspond to the following bifur-
cations:

S1, S2: appearance/disappearance of a pair of singular points in the phase plane;
H−: change of stability of the unique non-saddle singular point in the Andronov-

Hopf subcritical bifurcation;
P1, P2: appearance/disappearance of a small limit cycle in homoclinics of each

of the saddle points;
L1, L2: upper and lower (respectively) heteroclinics of saddle points.

The proofs of Theorems 2.1 and 3.1 are given in the Appendix.
Remark 2. For fixed values of α system (7β) is symmetric under (p, q, k1, k2, ε) →

(−p,−q, k1,−k2, ε). In particular it is sufficient to study the systems for k2 ≥ 0. Due
to this fact, we present in the schematic bifurcation diagram only certain parameter
and phase portraits. The portraits, which are symmetric, are given by number and
index a, see Figures 2a, 2b, and 3 for system (7+) and Figures 4a, 4b, and 5 for
system (7−).

3.4. Traveling wave solutions of PDE and their profiles as solutions of
wave ODE. The correspondence between traveling wave solutions of PDE model
and orbits of its wave system is well known (see [39], [4], [5]) and schematically is
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Figure 4. Schematic parameter portrait of the slow wave systems
(7-) of FitzHugh cross-diffusion model (for velocities C2 < Dk1/ε);
a gives the ε-cut for 0 < ε < 1, and b gives the ε-cut for ε > 1.
Boundaries of domains: S1 and S2, saddle-node (fold) bifurcations
in the phase plane; H−, the subcritical Andronov-Hopf bifurca-
tions; P1, P2, homoclinic bifurcations of the saddle point where
separatrix loop contains a single non-saddle inside; L1, L2, het-
eroclinics of saddle singular points. See Theorem 3.1(ii) for the
complete description of the boundaries of the domains. Refer to
Figure 5 for the phase portraits in each domain.

given in Figures 6–8. We make this correspondence more formal with the following
statement.

Proposition 1. i) A spatially homogeneous solution of the model corresponds to a
singular point of the vector field defined by the wave system;

ii) a wave front of the model corresponds to a heteroclinic curve of the wave
system which joins singular points (which are saddles) with different p-coordinates,
see Figure 6a, b;

iii) a wave impulse of the model corresponds to a homoclinic curve (separatrix
loop) of a singular point of the wave system (see Figure 7 where the small loops in (a)
and (b), containing one singular point inside, and the large loop in (c), containing
two singular points, are shown);

iv) a wave train of the model corresponds to a limit cycle in the (p, q) phase plane
of the wave system, see Figure 8.

3.5. Fast and slow traveling waves of the cross-diffusion system. Applying
Proposition 1, Theorem 3.1, and using the bifurcation diagrams of systems (7+)
and (7−), we can now prove the following theorems, which completely describe the
fast and slow traveling wave solutions of model (5).

Theorem 3.2. Model (5) has the fast traveling wave solutions (i.e., with C2 >
Dk1/ε) of the following types:

(a) the fronts in every domain of the portraits shown in Figure 2, except domains
1, 13, 14, see Figure 6;
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Figure 5. Schematic phase portraits corresponding to parameter
domains from Figure 4.

(b) the single train in domains 3a,b, 6a,b, 11, 14; two trains, differing in their
“amplitudes”, in domains 5a,b, 7a,b, 9, 12a,b, 13; three different trains in domains
10 and 8a,b (see Fig. 2a and Fig. 8);

(c) the impulses on the boundaries P1, P2 and R1, R2, see Figure 2a and Fig-
ure 7a,b,c.

Theorem 3.3. Model (5) has the slow traveling wave solutions (i.e., with C2 <
Dk1/ε) of the following types:

(a) the fronts in every domain of the portrait in Figure 4a and 4b except the
domain 1; monotonous fronts with the maximal “amplitude” on the boundaries L1,
L2 (see Fig. 6);

(b) the trains in the domains 4a,b, 5 of the portrait in Figure 4a (see Fig. 8);
(c) the impulses on the boundaries P1, P2 of the portrait in Figure 4a (see

Fig. 7a,b).

4. Discussion and conclusion.
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Figure 6. Wave front solutions of PDE (5) satisfy boundary con-
ditions: P (x) → p2 for x → ∞ and P (x) → p1 for x → −∞;
the solutions correspond to monotonous heteroclinic curves in the
(p, q)-plane of the ODE wave system (7).

4.1. Scenarios of appearance and transformations of the traveling waves.
The problem of our interest is the appearance and transformations of the traveling
wave solutions depending on the model parameters D and C that characterize the
axon abilities for the firing propagation. (One could assume that these character-
istics may change as a result of influence of certain drugs or external chemicals.)
The bifurcation diagram shown in Figures 4 and 5 corresponds to the wave sys-
tem of FH-model (5) with “large” D > εC2/k1. The bifurcation diagram shown
in Figures 2 and 3 corresponds to the wave system of model (5) with a “small”
cross-diffusion coefficient 0 ≤ D < εC2/k1 (and that this diagram coincides with
the bifurcation diagram of the local Fitz-Hugh model (3)). Thus, these diagrams
describe the model behavior before and after the threshold D = εC2/k1 accordingly,
where C is the fixed propagation speed.

We now trace the transformation of the traveling wave solutions by varying the
parameters C and D under the supposition that parameters k1, k2, ε have arbitrary
fixed values close to the point k∗1 = 1, k∗2 = 0, ε∗ = 1. The parametric point
(k∗1, k∗2, ε∗) is the organizing center of the model, because all the main behaviors
of the model are realized in a neighborhood of this point [20]. Let the (positive)
value of the speed propagation C be fixed and suppose the cross-diffusion coefficient
increases. For D = 0 the wave system of the model coincides with the local FitzHugh
model. This model demonstrates a spike (shown in Fig. 1) if (k1, k2, ε) belongs to
the boundary R2. The wave system describes “pseudowaves” and, in reality, there
is no firing propagation.

Let D > 0. Due to Theorems 3.2 and 3.3 the model at D < C2ε/k1 and
(k1, k2, ε) ∈ R2 has a traveling spike spreading along the axon with velocity C.
This spike has a “large” propagation velocity, C >

√
Dk1/ε, and “large” amplitude.

More exactly, the p-amplitude of the spike {p(ξ), q(ξ)} is greater than |p3 − p1|,
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Figure 7. Wave-impulses of PDE (5) satisfy boundary conditions:
P (x) → p1 for x → ±∞ or P (x) → p2 for x → ±∞; they corre-
spond to homoclinic curves in the (p, q)-plane of the ODE wave
system. Three typical pictures are given in figures a, b, and c.

Figure 8. Wave-train solutions of PDE (5) correspond to limit
cycles in the (p, q)-plane of the ODE wave system.
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where p1 < p2 < p3 are the roots of the polynomial F1(p, k1p− k2) = −p3 + p(1−
k1) + k2.

Let us note that as C → ∞ parameter α(C) → 1/ε; hence the wave system (7)
formally becomes the local system (3). The bifurcation diagram given in Figures 2
and 3 allows us to identify all other possible waves, namely, trains with “large” and
“small” p-amplitude (the latter if it is less than either |p2 − p1| or |p3 − p2|) and
fronts with nonmonotonic tails.

On the contrary, if D > εC2/k1, then a traveling spike does not exist. The
only possible traveling waves are “small” trains, impulses or fronts with the p-
amplitudes less than |p3 − p1|. The velocity C of propagation of these waves is
less than

√
Dk1/ε. The bifurcation diagram given in Figures 4 and 5 allows us to

describe transformations of waves with the changing of their velocity. If a para-
metric point (k1, k2, ε) belongs to domain 6a, then the sole traveling wave solution
{p(ξ), q(ξ)} is the wave-front with nonmonotonic tail. When the velocity C in-
creases (under the condition C <

√
Dk1/ε), the system intersects the boundary

L1 and enters into domain 7. There exist two slow wave-fronts with nonmonotonic
tails moving with the same velocity from the right to the left; their p-amplitudes
are |p2 − p1| and |p3 − p2|, correspondingly. When C increases, both waves become
monotonic; for C =

√
Dk1/ε the first equation of wave system (7−) is degenerate

and describes the curve q = −p3 + p(1 − k1) + k2 that smoothly joins the points
p1, p2, p3. Further increase of C leads to a “transformation” of the slow wave system
into the fast one, and thus to the appearance of waves similar to the spike spread-
ing along an axon. A behavior of the model under critical values D = C2ε/k1,
evidently, cannot be studied in the framework of the two-dimensional model (5).

4.2. Possible role of cross-diffusion mechanism. We utilized a modified ver-
sion of the FitzHugh equations to model the spatial propagation of neuron firing; we
assumed that this propagation is essentially caused by the cross-diffusion connection
between the potential and recovery variables. This modification, which includes the
implicit (although hypothetical) cross-diffusion mechanism, could help explore the
effect of a generic drug in the neuron firing process.

For example, the influence of certain drugs or external chemicals affects the
rate at which sodium channels close and the rate at which potassium channels
open, thus altering the normal dynamics of a firing potential membrane. A study
conducted by [14], [34] showed that certain metabolites in ethanol accelerate the
release of potassium ions from the brain cells. The increased potassium efflux in
turn makes it difficult for cells to absorb enough calcium and thus inhibits the
release of neurotransmitters [18]. The changes in the release of potassium ions
result in the changes in the recovery phase of the excitable membrane. In addition,
at any given time “there are circulating currents that cross the membrane and flow
lengthwise inside and outside the axon and the membrane current and potential
vary with distance as well as with time” [12]. A generic drug that alters the flow of
potassium has an effect on the neuron returning to its rest potential and may change
characteristics of axon conductivity that accelerate or delay a spatial propagation
of a firing potential. We include this effect of a generic drug by incorporating a
cross-diffusion term in the original FitzHugh model.

The mathematical problem of our interest was the appearance and transforma-
tions of the traveling wave solutions, which depended on the model parameters
D (the cross-diffusion coefficient) and C (the propagation speed) that characterize
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the axons abilities for the firing propagation. We studied the wave system of the
cross-diffusion version of the model and explored its bifurcation diagram.

We have shown that the cross-diffusion model possesses a large set of traveling
wave solutions; besides giving rise to the typical “fast” traveling wave solution
exhibited in the original “diffusion” FitzHugh-Nagumo equations, it also gives rise
to a “slow” traveling wave solution. This more sophisticated approach indicates that
instead of a “one-parametric” set of waves ordered by the propagation speed C, one
should consider a two-parametric set of traveling wave solutions with parameters
(C,D). We then proved that in the parametric space (D, C) (under fixed parameter
values ε, k1, k2) there exists a parabolic boundary, D = KC2, where constant K =
ε/k1, which separates the domains of existence of the fast and slow waves. The
system behavior qualitatively changes with the intersection of this boundary. Let us
emphasize that the “traveling spike” that we consider as the “normal” propagation
of a nerve impulse is a “fast” traveling wave. Hence, the parabola D = KC2 bounds
the area where the “normal” spike propagation is possible. After the intersection
of this boundary, due to a very large cross-diffusion coefficient or too small speed of
impulse propagation, a “normal” propagation of the nerve impulse is impossible and
some violations are inevitable: nerve impulses propagate with decreasing amplitude
or as damping oscillations.

The cross-diffusion regulations in the FitzHugh model allowed us to observe
the propagation of spikes and spike-like oscillations but restricted their velocities
from below or, equivalently, maintained the upper boundary for the cross-diffusion
coefficient. It means that if, by any reasons (e.g., as a result of the effect of a
generic drug) the speed of transmission of a signal along the axon is reduced, then
the “normal” neuron firing propagation in the form of a traveling spike is impossible.
The increase of the cross-diffusion coefficient beyond the “normal” value implies the
same result.

5. Mathematical Appendix. Proof of Theorem 3.1.

5.1. Lienard form of the wave system. By the change of variables (P, Q) →
(U,Z):

U = Q + k2, Z = F2(P,Q) ≡ k1P −Q− k2, (8)
the local model (3) is transformed to the generalized Lienard form:

Ut = Z, (9)
εZt = f(U) + Z(g1(U) + ZG(U,Z)) ≡ Φ(U,Z),

where

f(u) = −u3/k2
1 + u(1− k1) + k1k2

g1(u) = (1− ε)− 3u2/k2
1 (10)

G(u, z) = −(3u + z)/k2
1.

Note, that model (5) after transformation (8) reads as the cross-diffusion modi-
fication of (9) with the coefficient Dk1:

Ut = Z, (11)
εZt = Φ(U,Z) + Dk1Uxx,
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A traveling wave solution of system (11) is defined as a pair of bounded functions

U(x, t) = u(x + Ct) ≡ u(ξ), Z(x, t) = z(x + Ct) ≡ z(ξ)
where C > 0 is a velocity of propagation. After introducing an independent variable
η = ξ/C the functions {u(η), z(η)} satisfy the wave system

uη = z, zη = αΦ(u, z) ≡ F (u, z; α). (12β)

Here α = C2/(εC2 −Dk1) if C2 6= Dk1/ε, β = sign(α) and F (u, z; α) = αf(u) +
αzg1(u)+αz2G(u, z) with f(u), g1(u) and G(u, z) given by (10). Note, that α = 1/ε
if D = 0 and ε 6= 0; it means that the vector field defined by system (12+) coincides
with the vector field defined by system (9).

Let’s now replace the capital letters in (8) by small letters, reduce p and q via

p = (z + u)/k1, q = u− k2 (k1 6= 0),

and substitute into system (7β). Dividing the equation for uξ by C 6= 0 we get
system (12β).

In what follows we consider system (12β) instead (7β).

5.2. Main characteristics of the vector fields depending on α. Consider the
generalized Lienard vector field:

J = z∂/∂u + F (u, z; α)∂/∂z (13)
where

F (u, z; α) = α(f(u) + z(g1(u) + zG(u, z))), (14)
f(u) = −au3 + uδ1 + δ2,

g1(u) = δ3 − 3au2,

G(u, z) = −a(3u + z)

with positive constant a, arbitrary α 6= 0 and “small” parameters δ1, δ2, δ3.

Proposition 2. Let δ1 = 1 − k1, δ2 = k2k1, δ3 = 1 − ε, a = 1/k2
1 and α∗ =

C2/(εC2 − Dk1). Then vector field (13)-(14) coincides with vector field given by
system (9) if α = 1/ε and with vector field given by system (12β) if α = α∗.

For any α, 0 < α < ∞ vector field (13)-(14) has at least one singular point
(u0, 0) where u0 is a root of the cubic polynomial f(u) = −au3 + uδ1 + δ2.

Proposition 3. For positive α vector field (13)-(14) has a single (non-saddle)
singular point outside the curvilinear angle formed by curves δ2 = ±2(δ3

1/27a)1/2

and three (two nonsaddles and one saddle) singular points inside this angle; for
negative α vector field (13)-(14) has a single (saddle) or three (two saddles and one
nonsaddle) singular points outside and inside, respectively, the curvilinear angle.

Proof. The Jacobian of (13)-(14) at point (u0, 0) is:

A(J ) =
(

0 1
fu(u0) g1(u0)

)
.

For δ1 = 0 the vector field has the unique singularity (u0, 0) = ((δ2/a)1/3, 0). The
Jacobian determinant at (u0, 0), det(A) = 3αu2

0, is positive for positive α, so the
singular point is a nonsaddle and negative for negative α, so the point is a saddle
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[1], [16]. Because of standard continuity arguments, for small δ1 the polynomial
f(u) has a root u∗0 close to u0, det(A) preserves its sign and the type of singular
point remains unchanged.

For arbitrary δ1 6= 0, f(u) may have two additional roots. An appearance of
these roots corresponds to the appearance of two additional singular points of the
vector field. Generally, these additional points are a saddle and a node (see, for
example, [16], [23]). They are seen to come into existence when

−au3 + uδ1 + δ2 = 0, −3au2 + δ1 = 0,

and one can easily find the boundaries of the curvilinear angle in (δ1, δ2)-space that
correspond to existence of two-multiple roots u0 of polynomial f(u). ¤

5.3. Main part of vector field (13).
(A) Generalized Lienard vector field (13) with F (u, z; α) = h(u)+zr(u)+z2ϕ(z, u),

where h(u), r(u), ϕ(z, u) are polynomials, ϕ(0, 0) = 0, can be reduced by non-
degenerate change of variables (z, u) → (y1, y2) to the Lienard vector field
(13) where

F (y1, y2; α) = h(y1) + y2r(y1) (15)
(see [2]).

(B) Vector field (13), (15) with h(y1) = µ2 + µ1y1 + γy3
1 + O(y4

1), r(y1) = (µ3 +
µ4y1 + νy2

1 + O(y3
1)) where γν 6= 0 is C∞-equivalent to vector field (13) with

h(y1) = µ2 + µ1y1 + γy3
1 and r(y1) = µ3 + µ4y1 + νy2

1 where ν = ±1 and
γ = ±1; the bifurcation diagrams for γ = 1 and γ = −1 are topologically
nonequivalent ([35], [10]); the complete unfolding for µ4 6= 0 was presented in
the latter work.

Because of assertions (A), (B) for small δ1, δ2, δ3 unfolding of vector field (13),
(14) coincides with the unfolding of vector field

J = z∂/∂u + P (u, z;α)∂/∂z (16)

where

P (u, z; α) = α(f(u) + zg1(u)), f(u) = −au3 + uδ1 + δ2, g1(u) = δ3 − 3au2. (17)

System
uη = z, zη = P (u, z; α) (18β)

corresponds to J .
(C) For fixed values α and a system (18β) is symmetric under (z, u, δ1, δ2, δ3) →

(−z,−u, δ1,−δ2, δ3). In particular, it is sufficient to study the systems for
δ2 ≥ 0.

5.4. Proof of Theorem 3.1(i). Here we study the case α > 0 in system (12β).
We need the following theorem ([20]).

Theorem 5.1 (Khibnik, Krauskopf, Rousseau, 1998). (1) There exists a neigh-
borhood of the parametric point (µ1, µ2, µ3) = (0, 0, 0) in which any system of the
form

y′1 = y2, y′2 = h(y1) + y2r(y1) (19)
where h(y1) = µ2 + µ1y1 − y3

1 , r(y1) = (µ3 − y2
1), has a bifurcation diagram in a

neighborhood of the phase point (y1 = 0, y2 = 0), whose cut to the plane (µ1, µ2) for
arbitrary µ3 > 0 and µ3 < 0 is topologically equivalent to the diagrams presented in
Figures 2a, 3 and Figures 2b, 3.
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(2) The boundaries in the parameter portrait given in Figure 2 corresponding to
the local bifurcations of codimension 1 are the surfaces

S: saddle-node bifurcation, given by 4µ3
1 − 27µ2

2 = 0 and
H: Andronov-Hopf bifurcation, given by µ3

3−2µ2
3µ1 +µ3µ

2
1−µ2

2 = 0 for µ3 ≥ µ1
3 .

(3) The boundaries in the parameter portrait corresponding to the local bifurca-
tions of codimension 2 are the curves

SS: cusp bifurcation, given by µ1 = µ2 = 0, µ3 6= 0;
BT: Bogdanov-Takens bifurcation, given by the system 4µ3

1−27µ2
2 = 0, µ1−3µ3 =

0; and
DH: degenerate Andronov-Hopf bifurcation of order two, given by the system

µ1 + 3µ3 = 0 , 16µ3
3 − µ2

2 = 0, and in any perturbation the outmost limit cycle
is stable. For µ1 + 3µ3 < 0 the Andronov-Hopf bifurcation is supercritical and for
µ1 + 3µ3 > 0 it is subcritical.

(4) The boundaries in the parameter portrait given in Figure 2 corresponding to
the non-local bifurcations of codimension 1 are the surfaces

D: double limit cycles;
P1, P2: homoclinics of the saddle containing one non-saddle inside itself; and
R1, R2: homoclinics of the saddle containing two non-saddles inside itself.

Let us reduce system (18β) to the form (19). For any α > 0 we use scaling

u = Ay1, z = By2, η = 3τ (20)

with

A =
1

3a1/2α1/2
, B =

1
9a1/2α1/2

, a = 1/k2
1. (21)

Then

µ1 = 9αδ1, µ2 = 27a1/2α3/2δ2, µ3 = 3αδ3. (22)

Evidently, µ1, µ2, µ3 are small parameters if k1 ≈ 1, k2 ≈ 0, ε ≈ 1, i.e., if δ1, δ2, δ3 are
small, and the main assertions of Theorem 3.1 (i) for parameter point (k1, k2, ε) =
(1, 0, 1) follows from parts (1)-(3) of Theorem KKR.

Next, the divergence div
_

J of vector field (19) is negative, div
_

J = r(y1) = (µ3 −
y2
1) < 0 for µ3 < 0. Hence, vector field (16)-(17) with α > 0 has no closed orbits

and separatrix loops for any δ3 < 0 because µ3 = 3αδ3. Applying Proposition 2
and assertions (A) and (B) we can state that the ε-cuts of the parameter portrait
of vector field (7+) coincides with those given in Figures 2a and 2b. Statement (i)
of Theorem 3.1 is completely proved.

Corollary 1. For vector field (13)-(14) with α > 0 the boundaries of the parameter
portrait corresponding to the fold, cusp and Bogdanov-Takens bifurcations are given
by the equations, respectively,

S : {27aδ2
2 = 4δ3

1 , a 6= 0}; (23)
SS : {δ1 = δ2 = 0, a 6= 0};
BT : {δ1 = δ3, 27aδ2

2 = 4δ3
3 , a 6= 0}.

The boundaries corresponding to the subcritical (H−), supercritical (H+) and
degenerate Andronov-Hopf bifurcations are given by the equations, respectively,
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H− : {δ3(−3δ1 + δ3)2 = 27aδ2
2 , δ3 > 0, δ1 < δ3,−δ1 < δ3, a 6= 0}, (24)

H+ : {δ3(−3δ1 + δ3)2 = 27aδ2
2 , δ3 > 0, δ1 < δ3,−δ1 > δ3, a 6= 0},

DH : {27aδ2
2 = −16δ3

3 , δ1 = δ3}.
5.5. Proof of Theorem 3.1(ii). Here we study the case α < 0 in system (12β).

5.5.1. Local bifurcations of vector field (13)-(14). Let u0 be a root of polynomial
f(u) = −au3 + uδ1 + δ2(a 6= 0).

Proposition 4. Singular point (u0, 0) of vector field (13)-(14) with α < 0 is
1) a two-multiple singular point, corresponding to the fold bifurcation if u2

0 =
δ1/(3a), u0 6= 0, δ1 6= δ3,

2) a neutral spiral,2 corresponding to the Andronov-Hopf bifurcation if u2
0 =

δ3/(3a), δ3 < δ1;
3) a three-multiple singular point, corresponding to the cusp bifurcation if δ1 =

δ2 = 0 and δ3 6= 0; and
4) a degenerate saddle corresponding to the Bogdanov-Takens bifurcation, if 3au2

0 =
δ1 = δ3 and u0 6= 0.

Proof. Let us shift the point (u0, 0) to the origin:

v = u− u0 ⇒ u = v + u0 ⇒ u′ = v′.

Then system (13)-(14) takes the form

v′ = z, z′ = Q(v, z) (25)

where Q(v, z) = a10v+a01z+a20v
2+a02z

2+a11zv+a12vz2+a21v
2z+a30v

3+a03z
3,

and coefficients aij(i, j = 1, 2, 3):

a10 = α(δ1 − 3au2
0), a01 = α(δ3 − 3au2

0), (26)
a20 = −3αau0, a02 = −3αau0, a11 = −6αau0,

a30 = −αa, a21 = −3αa, a12 = −3αa, a03 = −αa.

The proof of the Proposition uses the following statements.

Lemma 5.2. [38]. Singular point O of vector field (25) is
1) a two-multiple singular point, corresponding to the fold bifurcation if a10 = 0,

a01a20 6= 0;
2) a neutral spiral, corresponding to the Andronov-Hopf bifurcation if a01 = 0,

a10 < 0 and the first Lyapunov value L1 ≡ −A(a11(−a20 +a10a02)+a10(−3a10a03 +
a21)) 6= 0, where A is a positive constant;

3) a three-multiple singular point, corresponding to the cusp bifurcation, if a10 =
0, a20 = 0, and a01a30 6= 0; and

4) a degenerate saddle corresponding to the Bogdanov-Takens bifurcation if a01 =
0, a10 = 0, and a11a20 6= 0.

Statements 1, 3, and 4 of Proposition 4 follow from the corresponding statements
1, 3, and 4 of Lemma 5.2 by direct substitution of coefficients (26). Let us prove
statement 2 of Proposition 4. If a01 = 0, then u2

0 = δ3/3a; if αa10 < 0, then a10 > 0,
which implies δ1 − 3au2

0 > 0, hence δ1 > δ3 > 0. So the first Lyapunov quantity
L1

∼= 3aα2(δ3 + δ1)(α(δ3 − δ1) + 1) is positive for δ1 > δ3 > 0, α < 0, and any δ2.
Proposition 4 is proved.

2A neutral spiral is a singular point having imaginary eigenvalues
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Corollary 2. For system (13)-(14) with α < 0 the boundaries of the parameter
portrait corresponding to the fold, cusp and Bogdanov-Takens bifurcations are given
by the equations (22). The boundary corresponding to the subcritical Andronov-Hopf
bifurcations is H : {δ3(−3δ1 + δ3)2 = 27aδ2

2 , δ1 > δ3 > 0, a 6= 0}.
5.5.2. Homo/heteroclinic nonlocal bifurcations. The parametric portrait for the
Bogdanov-Takens bifurcation contains a boundary P of the homoclinic bifurcation.
System (13)-(14) with α < 0 has two non-local homoclinic bifurcations; they cor-
respond to the boundaries P1 and P2 at the portrait given in Figure 4a. In more
detail, the system has two Bogdanov-Takens bifurcations, see points BT 1 and BT 2

in Figure 4a, which are the points of intersection of the Hopf boundaries H with
fold boundaries S1 and S2 (see [1], [16], [24]).

Let us reduce system (13)-(14) to the generalized Lienard form by scaling (20)-
(21) with α → −α:

y′1 = y2, y′2 = h(y1) + y2r(y1) + y2
2ϕ(y1, y2) (27)

where h(y1) = µ2 + µ1y1 + y3
1 , r(y1) = (µ3 + y2

1), ϕ(y1, y2) =
y1

3
+

y2

27
, and

µ2 = 27a1/2(−α)1/2αδ2, µ1 = 9αδ1, µ3 = 3αδ3. (28)

Due to assertions (A) and (B) from Section 5.3, system (27) is topologically
equivalent to the system

y′1 = y2, y′2 = h(y1) + y2p(y1), p(y1) = µ3 + µ4y1 + νy2
1 (29)

for small values of µ1, µ2, and µ3 with µ4 = 0 and ν 6= 0.
The following results are known for heteroclinic bifurcations of system (29):
(i) For µ4 6= 0 and ν = 0 the equations for boundary surfaces L1, L2 were derived

in [4];
(ii) For µ4 6= 0 and ν = ±1 the surfaces L1, L2 exist ([10]); and
(iii) For µ4 6= 0 and µ2 = 0 system (29) is Z2-equivariant; in this case the

existence of L1, L2 has been proved and the equation µ3 = µ1/5 + o(µ1), µ1 < 0
of the line of intersection of surfaces L1, L2, P1 and P2 was found in [22] (see also
[1]).

In the case µ4 = 0 we explored system (29) numerically using program packages
[26], [21]; for ν = 1 and various parameter points µ1, µ2, µ3 we observed separatrix
connections of saddle points of the system corresponding to L1, L2.

Recall that µ1 = 9αδ1, µ3 = 3αδ3 and α < 0, so δ1 > 0, δ3 > 0 at the line of
intersection of L1, L2 for the case µ2 = 0.

Next, the divergence of vector field (29) for ν = 1 and µ4 = 0 is positive,
divJ = (µ3 + y2

1) > 0 for µ3 > 0. Hence, vector field (13)-(14) with α < 0 has
no closed orbits and separatrix loops for any δ3 < 0 because µ3 = 3αδ3 > 0. The
heteroclinics exist for any δ3 but corresponding boundaries L1, L2 intersect only for
δ3 > 0. As a result of the performed analysis we obtained heteroclinic boundaries
L1, L2 presented in Figures 4a and 4b.

5.5.3. On limit cycles. The bifurcation diagram of the Bogdanov-Takens bifurcation
contains the parameter domain, which has a single phase limit cycle (see [6], [1]).
Recall that this cycle is unstable because the Andronov-Hopf bifurcation at H is
subcritical. System (12−) has two BT bifurcations hence the parameter portrait
contains two domains of phase limit cycles (see Figures 4a and 5).
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Next, the blow-up scaling

y1 → δy1, y2 → δ2y2, µ1 → δ2µ1,

µ2 → δ3µ2, µ3 → δ3µ3, t → t/δ with δ > 0

transforms vector field (29) to the vector field with

h(y1) = µ2 + µ1y1 + y3
1 , r(y1) = δ(µ3 + y2

1). (30)

System (29), (30) can be considered as a small perturbation of the Hamiltonian
system for δ = 0. The necessary condition for the appearance of limit cycles or
homo/heteroclinic loops from corresponding closed ovals or loops γ of the Hamilto-
nian system is ∮

γ

(µ3 + y2
1)y2dy1 = 0. (31)

Analysis of equation (31) with the help of well developed methods (see [8], [10],
[36]) allowed us to state that for small positive δ a limit cycle exists and coincide
with the limit cycle, which was observed in domains 4 of the parameter portrait
(see, Figures 4a and 5).

5.6. Description of nonlocal bifurcations of the vector-fields (18), (19).
Let us describe boundaries in the parameter space {δ, α} = {δ1, δ2, δ3, α} corre-
sponding to non-local bifurcations of vector field J . For positive α there exist the
following bifurcation surfaces (at δ3 > 0, see Fig. 2a).

The bifurcation “two-multiple cycles” is realized on the surface D , which touches
the surfaces H 1, H 2 by lines DH 1, DH 2, respectively.

The bifurcation “a small loop composed by one of separatrix pairs of the saddle
point” is realized on the surfaces P1, P2 and “a large loop composed by one of
separatrix pairs of the saddle point” is realized on the surfaces R1, R2. Surfaces
S1, H 1 and P1 have common lines BT 1 (see Fig. 2a) as well as S2, H 2 and
P2 have common lines BT 2 [6]. Surfaces R1, R2 have common lines of touching
with surfaces S1, S2. The intersection of R1, R2 (see Fig. 2) corresponds to the
phase portrait, which contains a saddle whose four separatrices compose “8”; this
bifurcation was studied in [33].

For negative α there exist the following bifurcation surfaces (at δ3 > 0, see
Fig. 4a).

The bifurcation “a small loop composed by one of separatrix pairs of the saddle
point” is realized on the surfaces P1, P2. Surfaces S1, H and P1 have common
lines BT 1 as well as S2, H and P2 have common lines BT 2.

The bifurcation “upper, lower (respectively) heteroclinics of saddle singular points”
is realized on the surfaces L1, L2 as for δ3 > 0 so for δ3 < 0. For δ3 > 0, L1, L2

and P1, P2 have a common line of intersection [36] such that two heteroclinics
simultaneously join saddle points.
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