Loading [Contrib]/a11y/accessibility-menu.js

Resistance mechanisms matter in SIR models

  • Received: 01 January 2007 Accepted: 29 June 2018 Published: 01 May 2007
  • MSC : 92D25.

  • We compare four SIR-style models describing behavioral or immunological disease resistance that may be both partial and temporary in parameter regions feasible for interpandemic influenza. For the models studied, backward bifurcations and bistability may occur in contexts where resistance is due to behavior change, but they do not occur when resistance originates from an immune response. Care must be exercised to ensure that modeling assumptions about resistance are consistent with the biological mechanisms under study.

    Citation: Timothy C. Reluga, Jan Medlock. Resistance mechanisms matter in SIR models[J]. Mathematical Biosciences and Engineering, 2007, 4(3): 553-563. doi: 10.3934/mbe.2007.4.553

    Related Papers:

    [1] Prathibha Ambegoda, Hsiu-Chuan Wei, Sophia R-J Jang . The role of immune cells in resistance to oncolytic viral therapy. Mathematical Biosciences and Engineering, 2024, 21(5): 5900-5946. doi: 10.3934/mbe.2024261
    [2] Cristian Tomasetti, Doron Levy . An elementary approach to modeling drug resistance in cancer. Mathematical Biosciences and Engineering, 2010, 7(4): 905-918. doi: 10.3934/mbe.2010.7.905
    [3] Tianqi Song, Chuncheng Wang, Boping Tian . Mathematical models for within-host competition of malaria parasites. Mathematical Biosciences and Engineering, 2019, 16(6): 6623-6653. doi: 10.3934/mbe.2019330
    [4] Helen Moore, Weiqing Gu . A mathematical model for treatment-resistant mutations of HIV. Mathematical Biosciences and Engineering, 2005, 2(2): 363-380. doi: 10.3934/mbe.2005.2.363
    [5] Xiaxia Kang, Jie Yan, Fan Huang, Ling Yang . On the mechanism of antibiotic resistance and fecal microbiota transplantation. Mathematical Biosciences and Engineering, 2019, 16(6): 7057-7084. doi: 10.3934/mbe.2019354
    [6] Cassidy K. Buhler, Rebecca S. Terry, Kathryn G. Link, Frederick R. Adler . Do mechanisms matter? Comparing cancer treatment strategies across mathematical models and outcome objectives. Mathematical Biosciences and Engineering, 2021, 18(5): 6305-6327. doi: 10.3934/mbe.2021315
    [7] Edgar Alberto Vega Noguera, Simeón Casanova Trujillo, Eduardo Ibargüen-Mondragón . A within-host model on the interactions of sensitive and resistant Helicobacter pylori to antibiotic therapy considering immune response. Mathematical Biosciences and Engineering, 2025, 22(1): 185-224. doi: 10.3934/mbe.2025009
    [8] Michele L. Joyner, Cammey C. Manning, Brandi N. Canter . Modeling the effects of introducing a new antibiotic in a hospital setting: A case study. Mathematical Biosciences and Engineering, 2012, 9(3): 601-625. doi: 10.3934/mbe.2012.9.601
    [9] Nicolas Bacaër, Cheikh Sokhna . A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences and Engineering, 2005, 2(2): 227-238. doi: 10.3934/mbe.2005.2.227
    [10] Rujing Zhao, Xiulan Lai . Evolutionary analysis of replicator dynamics about anti-cancer combination therapy. Mathematical Biosciences and Engineering, 2023, 20(1): 656-682. doi: 10.3934/mbe.2023030
  • We compare four SIR-style models describing behavioral or immunological disease resistance that may be both partial and temporary in parameter regions feasible for interpandemic influenza. For the models studied, backward bifurcations and bistability may occur in contexts where resistance is due to behavior change, but they do not occur when resistance originates from an immune response. Care must be exercised to ensure that modeling assumptions about resistance are consistent with the biological mechanisms under study.


  • This article has been cited by:

    1. A.B. Gumel, Causes of backward bifurcations in some epidemiological models, 2012, 395, 0022247X, 355, 10.1016/j.jmaa.2012.04.077
    2. Eva Zerz, Sebastian Walcher, nD methods for 1D parameter-dependent systems, 2015, 26, 0923-6082, 1097, 10.1007/s11045-015-0317-8
    3. Attila Dénes, Gergely Röst, Global stability for SIR and SIRS models with nonlinear incidence and removal terms via Dulac functions, 2016, 21, 1531-3492, 1101, 10.3934/dcdsb.2016.21.1101
    4. Muntaser Safan, Mirjam Kretzschmar, Karl P. Hadeler, Vaccination based control of infections in SIRS models with reinfection: special reference to pertussis, 2013, 67, 0303-6812, 1083, 10.1007/s00285-012-0582-1
    5. Attila Dénes, László Székely, Global dynamics of a mathematical model for the possible re-emergence of polio, 2017, 293, 00255564, 64, 10.1016/j.mbs.2017.08.010
    6. Ignacio Barradas, Virgilio Vázquez, Backward Bifurcation as a Desirable Phenomenon: Increased Fecundity Through Infection, 2019, 81, 0092-8240, 2029, 10.1007/s11538-019-00604-1
    7. Bruno Buonomo, Deborah Lacitignola, On the dynamics of an SEIR epidemic model with a convex incidence rate, 2008, 57, 0035-5038, 261, 10.1007/s11587-008-0039-4
    8. F. A. Milner, R. Zhao, A New Mathematical Model of Syphilis, 2010, 5, 0973-5348, 96, 10.1051/mmnp/20105605
    9. Timothy C. Reluga, Carl T. Bergstrom, Game Theory of Social Distancing in Response to an Epidemic, 2010, 6, 1553-7358, e1000793, 10.1371/journal.pcbi.1000793
    10. Timothy C. Reluga, Rachel A. Smith, David P. Hughes, Dynamic and game theory of infectious disease stigmas, 2019, 476, 00225193, 95, 10.1016/j.jtbi.2019.05.020
    11. David J. Gerberry, Practical aspects of backward bifurcation in a mathematical model for tuberculosis, 2016, 388, 00225193, 15, 10.1016/j.jtbi.2015.10.003
    12. Andrey Y. Lokhov, David Saad, Optimal deployment of resources for maximizing impact in spreading processes, 2017, 114, 0027-8424, E8138, 10.1073/pnas.1614694114
    13. Timothy C. Reluga, Jan Medlock, Alan S. Perelson, Backward bifurcations and multiple equilibria in epidemic models with structured immunity, 2008, 252, 00225193, 155, 10.1016/j.jtbi.2008.01.014
    14. Yangyuanxiang Xu, Yawei Zhao, Bing Xu, 2019, Micro-Risk Propagation Model Based on Time Fluctuation Factor, 978-1-7281-0829-2, 344, 10.1109/ICAIBD.2019.8837041
    15. Mohammadali Dashtbali, Optimal strategies for controlling the outbreak of COVID-19: Reducing its cost and duration, 2022, 9, 2353-0626, 317, 10.1515/msds-2022-0161
    16. Yu-Jhe Huang, Jonq Juang, Tai-Yi Kuo, Yu-Hao Liang, Forward-backward and period doubling bifurcations in a discrete epidemic model with vaccination and limited medical resources, 2023, 86, 0303-6812, 10.1007/s00285-023-01911-x
    17. Marcelo A. Pires, Cesar I.N. Sampaio Filho, Hans J. Herrmann, José S. Andrade, Tricritical behavior in epidemic dynamics with vaccination, 2023, 174, 09600779, 113761, 10.1016/j.chaos.2023.113761
    18. Benito Chen-Charpentier, SIRS Epidemic Models with Delays, Partial and Temporary Immunity and Vaccination, 2024, 4, 2673-9909, 666, 10.3390/appliedmath4020036
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2623) PDF downloads(555) Cited by(18)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog