
MATHEMATICAL BIOSCIENCES http://www.mbejournal.org/
AND ENGINEERING
Volume 4, Number 3, July 2007 pp. 553–563

RESISTANCE MECHANISMS MATTER IN SIR MODELS

Timothy C. Reluga

Theoretical Biology and Biophysics Group, Theoretical Division
Los Alamos National Laboratory

Los Alamos, NM 87545

Jan Medlock

Department of Epidemiology and Public Health
Yale University School of Medicine

New Haven, CT 06520

(Communicated by Abba Gumel)

Abstract. We compare four SIR-style models describing behavioral or im-
munological disease resistance that may be both partial and temporary in pa-
rameter regions feasible for interpandemic influenza. For the models studied,
backward bifurcations and bistability may occur in contexts where resistance
is due to behavior change, but they do not occur when resistance originates
from an immune response. Care must be exercised to ensure that modeling
assumptions about resistance are consistent with the biological mechanisms
under study.

1. Introduction. Resistance against an infectious disease is protection that re-
duces an individual’s risk of contracting the disease, relative to some baseline sus-
ceptibility. Many public health policies for reducing the prevalence of infectious
disease impede transmission by creating some form of resistance in the host pop-
ulation. Vaccination programs, on one hand, create immunological resistance by
training our immune systems to identify a pathogen. Public education programs,
on the other hand, create behavioral resistance by training us about preventive be-
haviors. In both cases, increases in resistance decrease transmission of the infectious
agent.

At first pass, we may consider using similar models for both cases. For instance,
Gomes et al. [1] use a model for immunological resistance (immunity) that is very
similar to a model used by Hadeler and Castillo-Chavez [2] for behavioral resistance
in sexually transmitted diseases. But the acquisition and persistence of these two
forms of resistance have an important difference. Immunological resistance persists
and is often enhanced by repeated infection [3]. Behavioral resistance, on the other
hand, may be adopted and abandoned arbitrarily. People who adopt preventive
behaviors but still get infected might revert to their original behavior because the
preventive behavior did not avert their infection. This difference between behav-
ioral resistance and immunological resistance can have important consequences for
epidemiological dynamics.
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In this paper, we compare four simple epidemic models that incorporate resis-
tance. These models differ primarily in their bookkeeping of resistance. The com-
parison shows that if resistance is behavioral, backward bifurcations occur when
reinfection causes a high rate of resistance loss. However, backward bifurcations
do not occur when resistance is immunological, since reinfection strengthens im-
munological resistance. This qualitative difference in model predictions suggests
that modelers should carefully specify the mechanisms of resistance particular to
the problem at hand. We close with a discussion of an appropriate null model for
immunological resistance and its application.

2. Analysis. In the classic compartmental Kermack–McKendrick model with pop-
ulation turnover, a population is subdivided into susceptible (S), infected (I), and
recovered and resistant (R) classes [4]. A standard-incidence formulation, where β
is the transmission rate, γ is the recovery rate, and µ is the population turnover
rate, gives the model equations

dS

dt
= µN − β

I

N
S − µS, (1a)

dI

dt
= β

I

N
S − γI − µI, (1b)

dR

dt
= γI − µR, (1c)

with the total population size N = S + I + R. In this model, the birth rate exactly
offsets the natural mortality rate. Since there is no disease-induced mortality, the
population’s size never changes and is determined by the initial conditions. Thus,
N is not a dynamic variable and, without loss of generality, the reader may assume
N = 1.

System (1) has two stationary solutions: a disease-free solution where

S(t) = N, I(t) = 0, R(t) = 0, (2)

and an endemic solution where

S(t) = N
µ + γ

β
, I(t) = N

µ

β

(
β

µ + γ
− 1

)
, R(t) = N

γ

β

(
β

µ + γ
− 1

)
. (3)

The two stationary solutions exchange stability depending on the value of the basic
reproduction number R0, the expected number of times a single infectious individ-
ual will transmit the disease in an otherwise disease-free population. R0 can be
calculated using standard methods [5]. For System (1),

R0 =
β

µ + γ
. (4)

A transcritical bifurcation in the stationary solutions occurs at R0 = 1 (see Figure
1). If R0 < 1, no biologically meaningful endemic stationary solution exists, and
the disease-free stationary solution is a global attractor. But if R0 > 1, the endemic
solution exists and is a global attractor, while the disease-free solution is a saddle
point [6]. This is referred to as a forward bifurcation because in the neighborhood
of the bifurcation point, the endemic disease prevalence is an increasing function of
R0.

For some epidemic processes, there may be two endemic equilibria that coexist
when R0 < 1 (see Figure 1). These endemic equilibria compose the two branches
of a fold bifurcation: typically one that is locally stable, and one that is locally
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Figure 1. Illustrative bifurcation diagrams for forward (left)
and backward (right) bifurcations in SIR models as functions of
the basic reproductive number R0. The dotted lines represent
locally unstable equilibria, while solid lines represent locally stable
equilibria. In a forward bifurcation, there is always a single locally
stable equilibrium. In a backward bifurcation, there exists a fold
bifurcation at Q such that if Q < R0 < 1, locally stable endemic
and disease-free equilibria coexist.

unstable. For example, for R0 slightly less than 1, there are two endemic stationary
solutions to System (5) (see Figure 2), which we will introduce shortly. If R0

decreases further below 1, the two endemic solutions collide and annihilate each
other in a fold bifurcation, leaving the disease-free solution as the only stationary
solution. For mathematical methods to identify backward bifurcations, see Dushoff
et al. [7], Huang et al. [8], and van den Driessche and Watmough [5]. Backward
bifurcations may appear in multigroup models [9, 10], standard-incidence models
with strong demographic effects [11], and diseases with synergistic interactions [12],
but have also been identified in some models with behavioral resistance [2].

We will now study the dynamics of an infectious disease against which individu-
als can acquire resistance that is only temporary and only partially protective. For
the moment, we will intentionally leave the exact nature of this resistance vague,
and define the resistance only in terms of individuals moving to and from the re-
sistant class R. Individuals in the resistant class have a reduced risk: they become
infected at a fraction σ of the rate of susceptible individuals. Susceptible individ-
uals directly acquire resistance at rate v, presumably through some public health
intervention, but resistant individuals revert to the susceptible class at rate a. Of
those individuals recovering from infection, the fraction 1 − f enter the resistant
class and the fraction f enter the susceptible class. Applying these generalizations
directly to System (1) gives

dS

dt
= µN − βS

I

N
+ fγI + aR− vS − µS, (5a)

dI

dt
= β(S + σR)

I

N
− γI − µI, (5b)

dR

dt
= −σβR

I

N
+ (1− f)γI − aR + vS − µR. (5c)

Versions of this model have been studied by Hadeler and van den Driessche [10],
Kribs-Zaleta and Velasco-Hernandez [13], and Gomes et al. [14]. Some features are
similar to those of System (1). The basic reproduction number is the expected
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Table 1. Model parameters motivated by inter-pandemic in-
fluenza. The infectivity β corresponds to a basic reproductive
number of approximately R0 = 4 in the absence of vaccination.

Parameter Estimate Reference
Infectious period, 1/γ 6 days Dushoff et al. [15]
Immune period, 1/a 6 years Dushoff et al. [15]
Population turnover period, 1/µ 77.9 years Miniño et al. [16]
Infectivity, β 570 year−1 person−1 Dushoff et al. [15]
Vaccination rate, v 1/3 year−1 CDC [17]
Vaccine effectiveness, 1− σ 0.88 Wilde et al. [18]
Infection-acquired-immunity up-
take, 1− f

Unknown

number of new transmissions to susceptible individuals plus the expected number
of new transmissions to vaccinated individuals over the course of an infection, or

R0 =
(

β

µ + γ

)(
µ + a

µ + a + v

)
+

(
σβ

µ + γ

)(
v

µ + a + v

)
. (6)

The disease-free stationary solution

S(t) = N
µ + a

µ + v + a
, I(t) = 0, R(t) = N

v

µ + v + a
(7)

is locally stable for R0 < 1, and locally unstable for R0 > 1. But unlike System (1),
the bifurcation at R0 = 1 is a backward bifurcation [2] if

1 +
(a + σv)2 + µvσ(1 + σ) + 2aµ + µ2

γ(1− σ)(a + µ)
<

(
1 +

σv

a + µ

)
f. (8)

This condition is derived using Huang’s method [8]. In general, 0 ≤ f ≤ 1, so there
are situations where no choice of f can satisfy Equation (8). For instance, if σ = 0
or σ = 1, Equation (8) can not be satisfied. But there is a subset of parameter space
where Equation (8) is satisfied. For instance, for the parameter values in Table 1,
which are motivated by interpandemic influenza, the bifurcation is backward when
f > 0.82. This was an exceptionally interesting result when first discovered by
Hadeler and Castillo-Chavez [2]. It showed that backward bifurcations can occur
in very simple models. Yet the mathematical analysis has not provided us with
a satisfactory biological explanation of why System (5) can exhibit a backward
bifurcation while System (1) can not.

Suppose we take a closer look at the construction of System (5). While Sys-
tem (5) is an obvious generalization of System (1) under the conditions we have
described, there is an equally reasonable alternative. If we subdivide the infected
population into a class of individuals who were previously susceptible (IS) and a
class of individuals who were previously resistant (IR) and assume reinfection can
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Figure 2. Bifurcation plots for the equilibrium infection preva-
lence as functions of transmission rate β. Solid lines denote locally
stable branches while dotted lines denote unstable branches. Sys-
tem (5) (left) has a subinterval of transmission rates for which
there are two simultaneously stable equilibria. System (9) (right)
exhibits a classic forward bifurcation with a unique locally stable
equilibrium for all transmission rates. The parameter values from
Table 1 with N = 1 and f = 1 were used in both plots.

not directly cause a loss of resistance,

dS

dt
= µN − βS

IS + IR

N
+ fγIS + aR− vS − µS, (9a)

dIS

dt
= βS

IS + IR

N
− γIS − µIS , (9b)

dIR

dt
= σβR

IS + IR

N
− γIR − µIR, (9c)

dR

dt
= −σβR

IS + IR

N
+ (1− f)γIS + γIR − aR + vS − µR, (9d)

with

S + IS + IR + R = N. (9e)

Just as in System (5), individuals can acquire and lose resistance, become sick,
recover, and die. The basic reproductive number of System (9) is still given by
Equation (6), and the dynamics of both systems are driven by many of the same
properties. But there is a subtle difference. In System (5), recovering individuals
may enter the susceptible or resistant classes independent of their past history. In
System (9), infected individuals who were previously resistant can never return
directly to the susceptible class. This difference turns out to be crucial. From
(8), we see that the backward bifurcation only occurs when a large fraction f of
recovered individuals return to the susceptible compartment. In System (9), the
condition for a backward bifurcation is

1 +
(a + σv)2 + µvσ(1 + σ) + 2aµ + µ2

γ(1− σ)(a + µ)
< f. (10)

Since f ≤ 1, Equation (10) can not be satisfied, no matter what fraction of infected
susceptible individuals return to the susceptible compartment. Thus, a backward
bifurcation is impossible in System (9).

The differences in the bifurcations of Systems (5) and (9) can be seen in Figures
2 and 3. By comparing these two models of partial and temporary resistance, we
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Figure 3. Dynamics for Systems (5) and (9) with R0 < 1
for two different initial conditions. For System (9), neither ini-
tial condition leads to endemic disease. But for System (5), the
larger initial infection load leads to endemic infection, while in-
fection dies out when the initial infection load is smaller. Pa-
rameter values are as in Table 1, except β = 140, N = 1,
and f = 0.9. The initial conditions are perturbations from the
disease-free equilibrium, S0 = a+µ

a+µ+v (N − I0) ≈ 0.35(1 − I0) and
R0 = v

a+µ+v (N−I0) ≈ 0.65(1−I0). The value of I at the unstable
equilibrium is about 8.6 × 10−4 and I0 was chosen to be half and
three times this value.

discover that the backward bifurcation of System (5) is a property of the exact
nature of resistance (hence, our original vagueness). If resistance corresponds to an
acquired antibody response that repeated infection reinforces, System (9) is more
appropriate and we have only a forward bifurcation. But if resistance corresponds
to a change in behavior that individuals may abandon when it fails to prevent
infection, then System (5) is more appropriate, and backward bifurcations are a
possibility.

A complete exploration of the bifurcation direction can be undertaken by al-
lowing different classes of infection to enter the susceptible and resistant classes
at different rates. Hadeler and van den Driessche [10] study a generalized class of
models that includes

dS

dt
= µN − βS

IS + IR

N
+ fSγIS + fRγIR + aR− vS − µS, (11a)

dIS

dt
= βS

IS + IR

N
− γIS − µIS , (11b)

dIR

dt
= σβR

IS + IR

N
− γIR − µIR, (11c)

dR

dt
= −σβR

IS + IR

N
+ (1− fS)γIS + (1− fR)γIR − aR + vS − µR. (11d)

In this model, a proportion of individuals who recover from infection are resistant to
reinfection and this proportion depends on whether the individual was susceptible
(1−fS) or resistant (1−fR) at the time of infection. If fS = fR then the proportion
who become resistant is independent of their state prior to becoming infected and
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System (11) reduces to System (5). If, instead, all of the individuals who were
resistant when they became infected return to the resistant class after infection,
then fR = 0 and System (11) reduces to System (9).

We can define the population’s average resistance as

1− S + σR

N
. (12)

At the disease-free equilibrium, the average resistance is

(1− σ)v
µ + a + v

. (13)

Near the bifurcation point R0 = 1, change in the average resistance can be under-
stood in terms of center manifold theory [19]. The dominant direction of change
in the state variables in the neighborhood of the disease-free equilibrium is in the
approximate direction of the right eigenvector of the Jacobian of System (11) cor-
responding to the bifurcating eigenvalue. When R0 = 1, the eigenvector of the
bifurcating eigenvalue is




vfrγσ − σva− (a + µ)(1− fs)γ − (a + µ)2

(µ + a) (µ + a + v)
σv (µ + a + v)

(a + µ) [(1− fs)γ − v]− vµσ − vfrγσ − v2σ


 . (14)

Near the disease-free equilibrium, the slow time-scale dynamics are along a center
manifold tangent to this eigenvector. (Note that there also exists a second eigenvec-
tor with eigenvalue 0 corresponding to the invariance of the population’s size, which
is not the vector of interest.) We can show, given the eigenvector in Equation (14),
that at the bifurcation point the average resistance given by Equation (12) is locally
decreasing in the direction of the eigenvector if and only if

1 +
(a + σv)2 + µvσ(1 + σ) + 2aµ + µ2

γ(1− σ)(a + µ)
< fS +

σv

a + µ
fR. (15)

This is exactly the backward bifurcation condition calculated using Huang’s method
[8]. Thus, System (11) has a backward bifurcation if and only if small perturbations
away from the disease-free steady state at the bifurcation point lead to a decrease
in the average resistance of the population.

By taking fS = fR = 1 and solving for a, we find that a necessary condition (see
Figure 4) for a backward bifurcation is

0 <
a

γ
<

√
σ (1− σ)

(
1 +

µ

γ

)
v

γ
− σ

v

γ
− µ

γ
. (16)

Equation (16) indicates that backward bifurcations in this family of models with
temporary and partial resistance can occur only when resistance confers an in-
termediate level of protection from future infection, population turnover is slow,
resistance wanes slowly, and the resistance-acquisition rate v is of intermediate
value. As the resistance-acquisition rate is increased from 0, the backward bifurca-
tion can appear and then disappear. This has important consequences for public
policy design, since the resistance-acquisition rate is easily controlled by public
health programs.
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Figure 4. A plot of the subset of (a, v)-parameter space for
which backward bifurcations are possible, as determined by Equa-
tion (16). The shaded region includes a large part of the feasible
ranges of the vaccination and waning rates. Parameters γ, µ, and
σ have the values given in Table 1.

3. Discussion. When backward bifurcations occur in Systems (5) and (11) at the
R0 = 1 threshold, the dynamics progress through a feedback process. If R0 = 1,
the presence of a small number of infections has a net effect of slightly reducing
the population’s average resistance. This reduction in resistance leads to a slightly
greater infection rate, and in turn, a further reduction in resistance. This self-
amplifying feedback process grows rapidly as the population’s resistance exhibits
a partial collapse. This contrasts with the case of a forward bifurcation, where an
increase in prevalence leads to a compensatory increase in resistance.

But the existence of a feedback process alone cannot distinguish forward and
backward bifurcations. Whether a positive perturbation in the number of infected
individuals leads to a self-amplifying feedback loop or to compensatory feedback
depends on the details of the system. Self-amplifying feedback describes the dy-
namics only when the system is given a sufficiently large perturbation to switch
basins of attraction. For values of R0 below 1, a small initial perturbation in the
number of infections does not lead to a self-amplifying feedback in resistance re-
duction. Thus, the presence of a feedback loop by itself is not sufficient to identify
backward bifurcations. In addition, it is not clear that this feedback mechanism
applies to other backward bifurcations (e.g., Corbett et al. [11]). Providing a bi-
ological interpretation of the condition of Huang et al. [8] remains an important
open problem in mathematical epidemiology.

Behavioral resistance can have almost arbitrary structure, so it is difficult to
state anything general about how it affects bifurcation structure. On the other
hand, biology suggests to us that the structure of immunological resistance usually
satisfies certain monotonicity conditions, and that these monotonicity conditions
preclude backward bifurcations in the absence of additional dynamic effects. First,
the greater the resistance, the less chance of infection. Second, the greater the
resistance, the faster the recovery if infection does occur. Third, exposure to disease
or vaccine increases resistance. Fourth, resistance wanes sequentially, such that
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stronger resistance always lasts longer than weaker resistance. We refer to these
four conditions as the immunological-resistance conditions (IRCs).

The IRCs can be formulated mathematically in several ways. As one example, we
could consider an ordinary differential equation model without demographic effects,
where the susceptible and infected populations are subdivided among j = 1 . . . n
compartments, Sj and Ij respectively, each with resistance 1− σj :

dSj

dt
= wj+1Sj+1 − wjSj − β




n∑

j=1

Ij


σjSj − vSj + γj−1Ij−1 + vSj−1, (17a)

dIj

dt
= β




n∑

j=1

Ij


 σjSj − γjIj . (17b)

Here, wj is the waning rate of resistance, v is the vaccination rate, β is the infection
rate, and γj is the recovery rate. The IRCs require that for all i < j, the suscepti-
bilities σi ≥ σj and the recovery rates γi ≤ γj . The third and fourth conditions are
built into the structure of Equation (17). We also take w0 = wn+1 = γ0 = S0 = 0.
There also exist more general formulations of the IRCs.

Several models that exhibit backward bifurcations violate these conditions. The
model studied in Arino et al. [20] violates the IRCs, as the authors note, because nat-
ural resistance provides greater protection than vaccination but lasts for a shorter
time. Lipsitch and Murray [21] point out that the tuberculosis model of Feng
et al. [22] exhibits backward bifurcations only when the parameter values violate
the IRCs. Systems (5) and (11) can violate our IRCs because infection can result
in a loss of resistance. Systems (1) and (9) satisfy the IRCs and admit only for-
ward bifurcations. These examples show that the IRCs can play an important role
in a model’s bifurcation structure. Unless there is specific biological evidence to
the contrary, we suggest that the IRCs should be adopted as the null model for
immunological resistance. We also conjecture that models like System (17) do not
exhibit backward bifurcations for biologically feasible parameter values.

Our comparative study illustrates the importance of the sometimes subtle book-
keeping issues associated with resistance mechanisms in epidemiological models. In
situations where repeated infection is expected to stimulate resistance, extra state
variables may be needed to adequately track the resistance state of individuals. In
models where the resistance state after infection is independent of the resistance
state before infection, extra state variables are not needed. In the models we con-
sidered, vaccination can occur at any time. Equivalent results can be derived for
models like those studied in Gomes et al. [1], where vaccination occurs when new
individuals enter the population, either through birth or immigration.

The subtly different models presented here have qualitatively different bifur-
cation structures with important epidemiological interpretations. If a backward
bifurcation is present, reducing the basic reproduction number below 1 is neces-
sary but may not suffice to eradicate an endemic disease. Eradication may require
significantly greater investment than that needed to prevent reintroduction. We
conclude that the bookkeeping of resistance history should be carefully constructed
to encapsulate the specifics of the epidemiology and immunology under study.
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