Realization of immune response features by dynamical system models

  • Received: 01 May 2006 Accepted: 29 June 2018 Published: 01 May 2007
  • MSC : 37N25.

  • Among the features of real immune responses that occur when antigens invade a body are two remarkable features. One is that the number of antibodies produced in the secondary invasion by identical antigens is more than 10 times larger than in the primary invasion. The other is that more effective antibodies, which are produced by somatic hypermutation during the immune response, can neutralize the antigens more quickly. This phenomenon is called ''affinity maturation''.
        In this paper, we try to reproduce these features by dynamical system models and present possible factors to realize them. Further, we present a model in which the memory of the antigen invasion is realized without immune memory cells.

    Citation: Mika Yoshida, Kinji Fuchikami, Tatsuya Uezu. Realization of immune response features by dynamical system models[J]. Mathematical Biosciences and Engineering, 2007, 4(3): 531-552. doi: 10.3934/mbe.2007.4.531

    Related Papers:

    [1] Samantha Erwin, Stanca M. Ciupe . Germinal center dynamics during acute and chronic infection. Mathematical Biosciences and Engineering, 2017, 14(3): 655-671. doi: 10.3934/mbe.2017037
    [2] Lingli Zhou, Fengqing Fu, Yao Wang, Ling Yang . Interlocked feedback loops balance the adaptive immune response. Mathematical Biosciences and Engineering, 2022, 19(4): 4084-4100. doi: 10.3934/mbe.2022188
    [3] Ali Moussaoui, Vitaly Volpert . The impact of immune cell interactions on virus quasi-species formation. Mathematical Biosciences and Engineering, 2024, 21(11): 7530-7553. doi: 10.3934/mbe.2024331
    [4] Yan Wang, Minmin Lu, Daqing Jiang . Viral dynamics of a latent HIV infection model with Beddington-DeAngelis incidence function, B-cell immune response and multiple delays. Mathematical Biosciences and Engineering, 2021, 18(1): 274-299. doi: 10.3934/mbe.2021014
    [5] Farzad Fatehi, Yuliya N. Kyrychko, Konstantin B. Blyuss . Time-delayed model of autoimmune dynamics. Mathematical Biosciences and Engineering, 2019, 16(5): 5613-5639. doi: 10.3934/mbe.2019279
    [6] Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022
    [7] Ephraim O. Agyingi, Tamas I. Wiandt, Laurence U. Buxbaum, Bolaji N. Thomas . Modeling the immune system response: an application to leishmaniasis. Mathematical Biosciences and Engineering, 2020, 17(2): 1253-1271. doi: 10.3934/mbe.2020064
    [8] Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341
    [9] Zishuo Yan, Hai Qi, Yueheng Lan . The role of geometric features in a germinal center. Mathematical Biosciences and Engineering, 2022, 19(8): 8304-8333. doi: 10.3934/mbe.2022387
    [10] Cuicui Jiang, Kaifa Wang, Lijuan Song . Global dynamics of a delay virus model with recruitment and saturation effects of immune responses. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1233-1246. doi: 10.3934/mbe.2017063
  • Among the features of real immune responses that occur when antigens invade a body are two remarkable features. One is that the number of antibodies produced in the secondary invasion by identical antigens is more than 10 times larger than in the primary invasion. The other is that more effective antibodies, which are produced by somatic hypermutation during the immune response, can neutralize the antigens more quickly. This phenomenon is called ''affinity maturation''.
        In this paper, we try to reproduce these features by dynamical system models and present possible factors to realize them. Further, we present a model in which the memory of the antigen invasion is realized without immune memory cells.


  • This article has been cited by:

    1. Niels J. M. Verstegen, Victor Ubels, Hans V. Westerhoff, S. Marieke van Ham, Matteo Barberis, System-Level Scenarios for the Elucidation of T Cell-Mediated Germinal Center B Cell Differentiation, 2021, 12, 1664-3224, 10.3389/fimmu.2021.734282
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2296) PDF downloads(452) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog