Impulsive Ecological Control Of A Stage-Structured Pest Management System

  • Received: 01 July 2004 Accepted: 29 June 2018 Published: 01 March 2005
  • MSC : 34A37, 92D25.

  • The dynamics of a stage-structured pest management system is studied by means of autonomous piecewise linear systems with impulses governed by state feedback control. The sufficient conditions of existence and stability of periodic solutions are obtained by means of the sequence convergence rule and the analogue of the Poincaré criterion. The attractive region of periodic solutions is investigated theoretically by qualitative analysis. The bifurcation diagrams of periodic solutions are obtained by using the Poincaré map, as well as the chaotic solution generated via a cascade of period-doubling bifurcations. The superiority of the state feedback control strategy is also discussed.

    Citation: Guirong Jiang, Qishao Lu, Linping Peng. Impulsive Ecological Control Of A Stage-Structured Pest Management System[J]. Mathematical Biosciences and Engineering, 2005, 2(2): 329-344. doi: 10.3934/mbe.2005.2.329

    Related Papers:

    [1] Yuan Tian, Sanyi Tang . Dynamics of a density-dependent predator-prey biological system with nonlinear impulsive control. Mathematical Biosciences and Engineering, 2021, 18(6): 7318-7343. doi: 10.3934/mbe.2021362
    [2] Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri . Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences and Engineering, 2012, 9(1): 75-96. doi: 10.3934/mbe.2012.9.75
    [3] Qizhen Xiao, Binxiang Dai . Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences and Engineering, 2015, 12(5): 1065-1081. doi: 10.3934/mbe.2015.12.1065
    [4] Jie Hu, Juan Liu, Peter Yuen, Fuzhong Li, Linqiang Deng . Modelling of a seasonally perturbed competitive three species impulsive system. Mathematical Biosciences and Engineering, 2022, 19(3): 3223-3241. doi: 10.3934/mbe.2022149
    [5] Eric M. Takyi, Kasey Cooper, Ava Dreher, Caroline McCrorey . The (De)Stabilizing effect of juvenile prey cannibalism in a stage-structured model. Mathematical Biosciences and Engineering, 2023, 20(2): 3355-3378. doi: 10.3934/mbe.2023158
    [6] Zhenzhen Shi, Huidong Cheng, Yu Liu, Yanhui Wang . Optimization of an integrated feedback control for a pest management predator-prey model. Mathematical Biosciences and Engineering, 2019, 16(6): 7963-7981. doi: 10.3934/mbe.2019401
    [7] Saheb Pal, Nikhil Pal, Sudip Samanta, Joydev Chattopadhyay . Fear effect in prey and hunting cooperation among predators in a Leslie-Gower model. Mathematical Biosciences and Engineering, 2019, 16(5): 5146-5179. doi: 10.3934/mbe.2019258
    [8] Eric M. Takyi, Charles Ohanian, Margaret Cathcart, Nihal Kumar . Dynamical analysis of a predator-prey system with prey vigilance and hunting cooperation in predators. Mathematical Biosciences and Engineering, 2024, 21(2): 2768-2786. doi: 10.3934/mbe.2024123
    [9] Jinxing Zhao, Yuanfu Shao . Bifurcations of a prey-predator system with fear, refuge and additional food. Mathematical Biosciences and Engineering, 2023, 20(2): 3700-3720. doi: 10.3934/mbe.2023173
    [10] Shunyi Li . Hopf bifurcation, stability switches and chaos in a prey-predator system with three stage structure and two time delays. Mathematical Biosciences and Engineering, 2019, 16(6): 6934-6961. doi: 10.3934/mbe.2019348
  • The dynamics of a stage-structured pest management system is studied by means of autonomous piecewise linear systems with impulses governed by state feedback control. The sufficient conditions of existence and stability of periodic solutions are obtained by means of the sequence convergence rule and the analogue of the Poincaré criterion. The attractive region of periodic solutions is investigated theoretically by qualitative analysis. The bifurcation diagrams of periodic solutions are obtained by using the Poincaré map, as well as the chaotic solution generated via a cascade of period-doubling bifurcations. The superiority of the state feedback control strategy is also discussed.


  • This article has been cited by:

    1. Weijian Xu, Lansun Chen, Shidong Chen, Guoping Pang, An impulsive state feedback control model for releasing white-headed langurs in captive to the wild, 2016, 34, 10075704, 199, 10.1016/j.cnsns.2015.10.015
    2. Huidong Cheng, Fang Wang, Tongqian Zhang, Multi-State Dependent Impulsive Control for Pest Management, 2012, 2012, 1110-757X, 1, 10.1155/2012/381503
    3. HONG ZHANG, RONGPING ZHU, LANSUN CHEN, ON A PERIODIC TIME-DEPENDENT IMPULSIVE SYSTEM OF STRATEGIES FOR CONTROLLING THE APPLE SNAIL IN PADDY FIELDS, 2007, 15, 0218-3390, 397, 10.1142/S0218339007002271
    4. Hunki Baek, Dynamic Complexities of a Three-Species Beddington-DeAngelis System with Impulsive Control Strategy, 2010, 110, 0167-8019, 23, 10.1007/s10440-008-9378-0
    5. BING LIU, YE TIAN, BAOLIN KANG, DYNAMICS ON A HOLLING II PREDATOR–PREY MODEL WITH STATE-DEPENDENT IMPULSIVE CONTROL, 2012, 05, 1793-5245, 1260006, 10.1142/S1793524512600066
    6. Kaibiao Sun, Shan Liu, Andrzej Kasperski, Yuan Tian, Dynamics Analysis and Biomass Productivity Optimisation of a Microbial Cultivation Process through Substrate Regulation, 2016, 2016, 1026-0226, 1, 10.1155/2016/3685941
    7. Xiangsen Liu, Binxiang Dai, The dynamics of a stage structure population model with fixed-time birth pulse and state feedback control strategy, 2016, 2016, 1687-1847, 10.1186/s13662-016-0852-0
    8. Huidong Cheng, Fang Wang, Tongqian Zhang, Multi-State Dependent Impulsive Control for Holling I Predator-Prey Model, 2012, 2012, 1026-0226, 1, 10.1155/2012/181752
    9. Shidong Chen, Weijian Xu, Lansun Chen, Zhonghao Huang, A White-headed langurs impulsive state feedback control model with sparse effect and continuous delay, 2017, 50, 10075704, 88, 10.1016/j.cnsns.2017.02.003
    10. XINZHU MENG, ZHITAO SONG, LANSUN CHEN, A NEW MATHEMATICAL MODEL FOR OPTIMAL CONTROL STRATEGIES OF INTEGRATED PEST MANAGEMENT, 2007, 15, 0218-3390, 219, 10.1142/S0218339007002143
    11. Tongqian Zhang, Wanbiao Ma, Xinzhu Meng, Impulsive control of a continuous-culture and flocculation harvest chemostat model, 2017, 48, 0020-7721, 3459, 10.1080/00207721.2017.1384861
    12. Hong Zhang, Lansun Chen, Juan J. Nieto, A delayed epidemic model with stage-structure and pulses for pest management strategy, 2008, 9, 14681218, 1714, 10.1016/j.nonrwa.2007.05.004
    13. LICHUN ZHAO, JINGNA LIU, WEI GAO, BIFURCATION CONTROL OF A PREDATOR–PREY MODEL BASED ON NUTRITION KINETICS, 2013, 06, 1793-5245, 1350019, 10.1142/S1793524513500198
    14. Xuehui Ji, Sanling Yuan, Lansun Chen, A pest control model with state-dependent impulses, 2015, 08, 1793-5245, 1550009, 10.1142/S1793524515500096
    15. YANKE DU, RUI XU, LIJIANG DUAN, DYNAMICS OF A STAGE-STRUCTURED PREDATOR-PREY MODEL CONCERNING IMPULSIVE CONTROL STRATEGY, 2009, 17, 0218-3390, 779, 10.1142/S0218339009003046
    16. Zhongjun Ma, Jian Yang, Guirong Jiang, Impulsive control in a stage structure population model with birth pulses, 2010, 217, 00963003, 3453, 10.1016/j.amc.2010.09.012
    17. Hunki Baek, The Dynamics of a Predator-Prey System with State-Dependent Feedback Control, 2012, 2012, 1085-3375, 1, 10.1155/2012/101386
    18. Huidong Cheng, Tongqian Zhang, Fang Wang, Existence and Attractiveness of Order One Periodic Solution of a Holling I Predator-Prey Model, 2012, 2012, 1085-3375, 1, 10.1155/2012/126018
    19. Baolin Kang, Mingfeng He, Bing Liu, Optimal Control of Agricultural Insects with a Stage-Structured Model, 2013, 2013, 1024-123X, 1, 10.1155/2013/168979
    20. THE GEOMETRICAL ANALYSIS OF A PREDATOR-PREY MODEL WITH MULTI-STATE DEPENDENT IMPULSES, 2018, 8, 2156-907X, 427, 10.11948/2018.427
    21. Hunki Baek, Extinction and Permanence of a Three-Species Lotka-Volterra System with Impulsive Control Strategies, 2008, 2008, 1026-0226, 1, 10.1155/2008/752403
    22. Linfei Nie, Zhidong Teng, Lin Hu, Jigen Peng, The dynamics of a Lotka–Volterra predator–prey model with state dependent impulsive harvest for predator, 2009, 98, 03032647, 67, 10.1016/j.biosystems.2009.06.001
    23. A. K. Misra, Akash Yadav, Dynamics of a stage-structured insect–vegetable crop interaction model with maturation delay, 2025, 18, 1793-5245, 10.1142/S1793524524500037
    24. Mengge Zhao, Jinyan Wang, Study on a switching model with stage structure for the integrated management of Bactericera gobica Loginova, 2025, 2025, 2731-4235, 10.1186/s13662-025-03939-3
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2633) PDF downloads(496) Cited by(24)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog