Research article

Applications of differential Kreb algebras in security protocol analysis

  • Published: 06 February 2026
  • MSC : 03E72, 08A72, 22E60, 62F07, 90C70

  • This paper introduces differential Kreb algebras, a novel extension of Kreb algebras incorporating higher-order derivation operators, and investigates their structural properties. By defining and analyzing differential terms of the form $ \mathcal{D}^{\gamma, \delta}(\varpi, \zeta) $, we establish results on symmetry, recurrence relations, and structural identities. Core morphisms—homomorphisms, isomorphisms, and automorphisms—are developed and their preservation properties. The framework is applied to security protocol analysis, where these terms model recursive permissions, access validation, and trust propagation. Numerical examples demonstrate both blocked and successful access decisions. This bridges algebraic theory and logic-driven system design for advances in applied algebra and security verification.

    Citation: Ghulam Muhiuddin, Nabilah Abughazalah, Manivannan Balamurugan. Applications of differential Kreb algebras in security protocol analysis[J]. AIMS Mathematics, 2026, 11(2): 3724-3746. doi: 10.3934/math.2026151

    Related Papers:

  • This paper introduces differential Kreb algebras, a novel extension of Kreb algebras incorporating higher-order derivation operators, and investigates their structural properties. By defining and analyzing differential terms of the form $ \mathcal{D}^{\gamma, \delta}(\varpi, \zeta) $, we establish results on symmetry, recurrence relations, and structural identities. Core morphisms—homomorphisms, isomorphisms, and automorphisms—are developed and their preservation properties. The framework is applied to security protocol analysis, where these terms model recursive permissions, access validation, and trust propagation. Numerical examples demonstrate both blocked and successful access decisions. This bridges algebraic theory and logic-driven system design for advances in applied algebra and security verification.



    加载中


    [1] Y. Imai, K. Iseki, On axiom system of propositional calculi, XIV, Proc. Japan Acad., 42 (1966), 19–22. https://doi.org/10.3792/pja/1195522169 doi: 10.3792/pja/1195522169
    [2] K. Iseki, An algebra related with propositional calculus, Proc. Japan Acad., 42 (1966), 26–29. https://doi.org/10.3792/pja/1195522171 doi: 10.3792/pja/1195522171
    [3] Q. P. Hu, X. Li, On BCH-algebras, Math. Semin. Notes, 11 (1983), 313–320.
    [4] J. Neggers, H. S. Kim, On d-algebras, Math. Slovaca, 49 (1999), 19–26.
    [5] H. S. Kim, Y. H. Kim, On BE-algebras, Sci. Math. Jpn., 66 (2007), 113–116. https://doi.org/10.32219/isms.66.1_113 doi: 10.32219/isms.66.1_113
    [6] S. S. Ahn, K. S. So, On ideals and upper sets in BE-algebras, Sci. Math. Jpn., 68 (2008), 351–357.
    [7] S. S. Ahn, K. S. So, On generalized upper sets in BE-algebras, Bull. Korean Math. Soc., 46 (2009), 281–287. https://doi.org/10.4134/BKMS.2009.46.2.281 doi: 10.4134/BKMS.2009.46.2.281
    [8] H. S. Kim, J. Neggers, S. S. Ahn, On pre-commutative algebras, Mathematics, 7 (2019), 336. https://doi.org/10.3390/math7040336 doi: 10.3390/math7040336
    [9] T. G. Jaiyeola, E. Ilojide, M. O. Olatinwo, F. Smarandache, On the classification of Bol-Moufang type of some varieties of quasi neutrosophic triplet loops (Fenyves BCI-algebras), Symmetry, 10 (2018), 427. https://doi.org/10.3390/sym10100427 doi: 10.3390/sym10100427
    [10] T. G. Jaiyeola, E. Ilojide, A. J. Saka, K. G. Ilori, On the isotopy of some varieties of Fenyves quasi neutrosophic triplet loops (Fenyves BCI-algebras), Neutrosophic Sets Syst., 31 (2020), 200–223.
    [11] E. Ilojide, T. G. Jaiyeola, M. O. Olatinwo, On holomorphy of Fenyves BCI-algebras, J. Niger. Math. Soc., 38 (2019), 139–155.
    [12] E. Ilojide, On Obic algebras, Int. J. Math. Combin., 4 (2019), 80–88.
    [13] E. Ilojide, A note on Torian algebras, Int. J. Math. Combin., 2 (2020), 80–87.
    [14] E. Ilojide, On ideals of Torian algebras, Int. J. Math. Combin., 2 (2020), 101–108.
    [15] E. Ilojide, On right distributive Torian algebras, Int. J. Math. Combin., 4 (2020), 100–107.
    [16] E. Ilojide, On isomorphism theorems of Torian algebras, Int. J. Math. Combin., 1 (2021), 56–61.
    [17] E. Ilojide, Monics and Krib maps in Nayo algebras, J. Niger. Math. Soc., 40 (2021), 1–16.
    [18] M. Ebrahimi, A. Izadara, The ideal entropy of BCI-algebras and its application in binary linear codes, Soft Comput., 23 (2019), 39–57. https://doi.org/10.1007/s00500-018-3620-0 doi: 10.1007/s00500-018-3620-0
    [19] J. Neggers, S. A. Sun, H. S. Kim, On Q-algebras, Int. J. Math. Math. Sci., 27 (2001), 749–757. https://doi.org/10.1155/S0161171201006627 doi: 10.1155/S0161171201006627
    [20] A. Rezaei, A. Borumand Saeid, Q. Zhan, Fuzzy congruence relations on pseudo BE-algebras, J. Algebraic Hyperstruct. Log. Algebras, 1 (2020), 31–43. https://doi.org/10.29252/HATEF.JAHLA.1.2.4 doi: 10.29252/HATEF.JAHLA.1.2.4
    [21] Y. B. Jun, Positive implicative BE-filters of BE-algebras based on Lukasiewicz fuzzy sets, J. Algebraic Hyperstruct. Log. Algebras, 4 (2023), 1–11. https://doi.org/10.61838/KMAN.JAHLA.4.1.1 doi: 10.61838/KMAN.JAHLA.4.1.1
    [22] B. Ganji Saffar, G. Muhiuddin, M. Aaly Kologani, R. A. Borzooei, Construction of (n-fold) EQ-algebras by using fuzzy n-fold filters, New Math. Nat. Comput., 17 (2021), 827–851. https://doi.org/10.1142/S179300572150040X doi: 10.1142/S179300572150040X
    [23] Y. B. Jun, S. Z. Song, G. Muhiuddin, Filter theory in EQ-algebras based on soft sets, Quasigroups Relat. Syst., 24 (2016), 25–32.
    [24] E. Ilojide, On Kreb algebras, J. Algebraic Hyperstruct. Log. Algebras, 5 (2024), 169–182. https://doi.org/10.61838/kman.jahla.5.2.14 doi: 10.61838/kman.jahla.5.2.14
    [25] E. Ilojide, Differential BCI algebras, Int. J. Math. Anal. Model., 8 (2025), 14–21.
    [26] R. Needham, M. Schroeder, Using encryption for authentication in large networks of computers, Commun. ACM, 21 (1978), 993–999. https://doi.org/10.1145/359657.35965 doi: 10.1145/359657.35965
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(127) PDF downloads(32) Cited by(0)

Article outline

Figures and Tables

Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog