This paper is concerned with a class of nonlinear elliptic equations with a generalized Hardy potential
$ \begin{equation*} -\Delta u = \frac{\lambda }{|x{{|}^{\alpha }}}u-b(x)g(u), \ x\in \Omega \backslash \{0\}, \end{equation*} $
where $ \alpha > 0 $, $ \Omega \subset {\ \mathbb{R}}^{N}(N\geq 3) $ is a bounded smooth domain containing the origin. We establish the existence, nonexistence, and asymptotic behavior of positive solutions. When the potential function $ |x|{^{-\alpha }} $ has strong singularity at the origin, we obtain some qualitative properties of positive solutions.
Citation: Linlin Wang, Jingjing Liu, Yonghong Fan. Existence of positive solutions for a class of nonlinear elliptic equations with Hardy potential[J]. AIMS Mathematics, 2026, 11(2): 3441-3463. doi: 10.3934/math.2026140
This paper is concerned with a class of nonlinear elliptic equations with a generalized Hardy potential
$ \begin{equation*} -\Delta u = \frac{\lambda }{|x{{|}^{\alpha }}}u-b(x)g(u), \ x\in \Omega \backslash \{0\}, \end{equation*} $
where $ \alpha > 0 $, $ \Omega \subset {\ \mathbb{R}}^{N}(N\geq 3) $ is a bounded smooth domain containing the origin. We establish the existence, nonexistence, and asymptotic behavior of positive solutions. When the potential function $ |x|{^{-\alpha }} $ has strong singularity at the origin, we obtain some qualitative properties of positive solutions.
| [1] |
C. Y. Liu, X. Y. Wu, Nonlinear stability and convergence of erkn integrators for solving nonlinear multi-frequency highly oscillatory second-order odes with applications to semi-linear wave equations, Appl. Numer. Math., 153 (2020), 352–380. https://doi.org/10.1016/j.apnum.2020.02.020 doi: 10.1016/j.apnum.2020.02.020
|
| [2] |
N. Benzerroug, M. Choubani, Effects of hills, morphology, electromagnetic fields, temperature, pressure, and aluminum concentration on the second harmonic generation of ${GaAs/Al_X Ga_{1-x} As}$ elliptical quantum rings, Results Phys., 63 (2024), 107883. https://doi.org/10.1016/j.rinp.2024.107883 doi: 10.1016/j.rinp.2024.107883
|
| [3] |
M. D. Todorov, The effect of the elliptic polarization on the quasi-particle dynamics of linearly coupled systems of nonlinear schrödinger equations, Math. Comput. Simul., 127 (2016), 273–286. https://doi.org/10.1016/j.matcom.2014.04.011 doi: 10.1016/j.matcom.2014.04.011
|
| [4] |
V. Lopac, I. Mrkonjić, N. Pavin, D. Radić, Chaotic dynamics of the elliptical stadium billiard in the full parameter space, Physica D, 217 (2006), 88–101. https://doi.org/10.1016/j.physd.2006.03.014 doi: 10.1016/j.physd.2006.03.014
|
| [5] |
C. Z. Wei, S. Y. Park, C. Park, Linearized dynamics model for relative motion under a $J_2$-perturbed elliptical reference orbit, Int. J. Nonlinear Mech., 55 (2013), 55–69. https://doi.org/10.1016/j.ijnonlinmec.2013.04.016 doi: 10.1016/j.ijnonlinmec.2013.04.016
|
| [6] |
R. P. Chen, R. Y. Ma, Global bifurcation of positive radial solutions for an elliptic system in reactor dynamics, Comput. Math. Appl., 65 (2013), 1119–1128. https://doi.org/10.1016/j.camwa.2013.01.038 doi: 10.1016/j.camwa.2013.01.038
|
| [7] |
M. D. Todorov, C. I. Christov, Collision dynamics of elliptically polarized solitons in coupled nonlinear schrödinger equations, Math. Comput. Simulat., 82 (2012), 1321–1332. https://doi.org/10.1016/j.matcom.2010.04.022 doi: 10.1016/j.matcom.2010.04.022
|
| [8] |
V. Benci, P. D'Avenia, D. Fortunato, L. Pisani, Solitons in several space dimensions: derrick's problem and infinitely many solutions, Arch. Ration. Mech. An., 154 (2000), 297–324. https://doi.org/10.1007/s002050000101 doi: 10.1007/s002050000101
|
| [9] | M. Marcus, P. T. Nguyen, Moderate solutions of semilinear elliptic equations with Hardy potential, in Ann. Inst. H. Poincaré Anal. Non liné aire, 34 (2017), 69–88. https://doi.org/10.1016/j.anihpc.2015.10.001 |
| [10] |
J. L. Vazquez, E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000), 103–153. https://doi.org/10.1006/jfan.1999.3556 doi: 10.1006/jfan.1999.3556
|
| [11] |
J. Liu, Y. Duan, J. F. Liao, Bound state solutions for a class of nonlinear elliptic equations with Hardy potential and Berestycki-Lions type conditions, Appl. Math. Lett., 130 (2022), 108010. https://doi.org/10.1016/j.aml.2022.108010 doi: 10.1016/j.aml.2022.108010
|
| [12] |
T. Godoy, Positive solutions of nonpositone sublinear elliptic problems, Opusc. Math., 44 (2024), 827–851. https://doi.org/10.7494/OpMath.2024.44.6.827 doi: 10.7494/OpMath.2024.44.6.827
|
| [13] |
J. Liu, Q. G. An, Analysis of degenerate p-Laplacian elliptic equations involving Hardy terms: Existence and numbers of solutions, Appl. Math. Lett., 160 (2025), 109330. https://doi.org/10.1016/j.aml.2024.109330 doi: 10.1016/j.aml.2024.109330
|
| [14] |
G. Chirillo, L. Montoro, L. Muglia, B. Sciunzi, Existence and regularity for a general class of quasilinear elliptic problems involving the Hardy potential, J. Differ. Equations, 349 (2023), 1–52. https://doi.org/10.1016/j.jde.2022.12.003 doi: 10.1016/j.jde.2022.12.003
|
| [15] |
N. S. Papageorgiou, V. D. Rădulescu, X. Y. Sun, Positive solutions for nonparametric anisotropic singular solutions, Opusc. Math., 44 (2024), 409–423. https://doi.org/10.7494/OpMath.2024.44.3.409 doi: 10.7494/OpMath.2024.44.3.409
|
| [16] |
D. S. Kang, Existence and properties of radial solutions to critical elliptic systems involving strongly coupled Hardy terms, J. Math. Anal. Appl., 536 (2024), 128252. https://doi.org/10.1016/j.jmaa.2024.128252 doi: 10.1016/j.jmaa.2024.128252
|
| [17] |
A. Moussaoui, D. Nabab, J. Vélin, Singular quasilinear convective systems involving variable exponents, Opusc. Math., 44 (2024), 105–134. https://doi.org/10.7494/OpMath.2024.44.1.105 doi: 10.7494/OpMath.2024.44.1.105
|
| [18] |
X. Y. Zhang, W. T. Qi, Nonhomogeneous quasilinear elliptic systems with small perturbations and lack of compactness, Bull. Math. Sci., 15 (2025), 2550004. https://doi.org/10.1142/s1664360725500043 doi: 10.1142/s1664360725500043
|
| [19] |
F. C. Cîrstea, M. Fǎrcǎşeanu, Sharp existence and classification results for nonlinear elliptic equations in ${R^{N}\backslash \{0\}}$ with Hardy potential, J. Differ. Equations, 292 (2021), 461–500. https://doi.org/10.1016/j.jde.2021.05.005 doi: 10.1016/j.jde.2021.05.005
|
| [20] |
TH. Hoffmann-Ostenhof, A. Lapten, I. Shcherbakov, Hardy and Sobolev inequalities on antisymmetric functions, Bull. Math. Sci., 14 (2024), 2350010. https://doi.org/10.1142/S1664360723500108 doi: 10.1142/S1664360723500108
|
| [21] |
L. Wei, Y. H. Du, Exact singular behavior of positive solutions to nonlinear elliptic equations with a Hardy potential, J. Differ. Equations, 262 (2017), 3864–3886. https://doi.org/10.1016/j.jde.2016.12.004 doi: 10.1016/j.jde.2016.12.004
|
| [22] |
X. Y. Cheng, Z. S. Feng, L. Wei, Positive solutions for a class of elliptic equations, J. Differ. Equations, 275 (2021), 1–26. https://doi.org/10.1016/j.jde.2020.12.005 doi: 10.1016/j.jde.2020.12.005
|
| [23] |
F. C. Cîrstea, A complete classification of the isolated singularities for nonlinear elliptic equations with inverse square potentials, Mem. Am. Math. Soc., 227 (2014), 1–97. https://doi.org/10.1090/memo/1068 doi: 10.1090/memo/1068
|
| [24] |
Y. H. Du, L. Ma, Logistic type equations on ${R^N}$ by a squeezing method involving boundary blow-up solutions, J. London Math. Soc., 64 (2001), 107–124. https://doi.org/10.1017/s0024610701002289 doi: 10.1017/s0024610701002289
|
| [25] |
L. Wei, Z. S. Feng, Isolated singularity for semilinear elliptic equations, Discrete Cont. Dyn. Syst., 35 (2015), 3239–3252. https://doi.org/10.3934/dcds.2015.35.3239 doi: 10.3934/dcds.2015.35.3239
|
| [26] | Y. H. Du, Order structure and topological methods in nonlinear partial differential equations: Vol. 1: Maximum principles and applications, Beijing: World Scientific Publishing, 2006. https://doi.org/10.1142/5999 |
| [27] |
P. Padilla, The principal eigenvalue and maximum principle for second order elliptic operators on riemannian manifolds, J. Math. Anal. Appl., 205 (1997), 285–312. https://doi.org/10.1006/jmaa.1997.5139 doi: 10.1006/jmaa.1997.5139
|