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−∆u =
λ

|x|α
u − b(x)g(u), x ∈ Ω\{0},
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1. Introduction

Partial differential equations are extremely important as a crucial branch of modern mathematics,
such as elliptic-type equations and their direct application to nonlinear fluctuation equations [1], the
theory of electromagnetism [2, 3], dynamics [4–7], the fields of finance and quantum mechanics [8],
and gravitational lensing effects [9], as well as computational science and engineering.

In recent years, elliptic equations with Hardy potential have attracted the attention of many scholars,
and this kind of research has important practical and theoretical significance in the fields of heat
conduction theory [10], fluid dynamics, and so on. Many excellent conclusions have been obtained
on the existence, multiplicity, regularity and asymptotic behavior of their solutions. The study of
single equations could be found in [11–15], among them, the authors deals with the Laplacian case
in [11, 12]; In [13], the authors considered the case of the P-Laplacian equation with the weighted
function; and in [14, 15], the authors deals with a more general quasilinear elliptic problems. The case
of elliptic differential systems was investigated in [16–18] and so on.
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In [19], F.C. Cı̂rstea et al. studied the following nonlinear elliptic equations with Hardy potential

−∆u =
λ

|x|2
u − |x|σuq, x ∈ Ω\{0} (1.1)

and obtained a complete classification of the singularities of all their positive solutions when λ ≤ H :=(
N−2

2

)2
. It is well known that H is the classical Hardy constant [20]. In [21], Wei studied the exact

singularity of all positive solutions when λ > H and obtained the following theorem.

Theorem 1.1. Suppose that λ > H and u(x) is an arbitrary positive solution of (1.1). Then

lim
x→0
|x|2+σup−1(x) = l,

where

l = λ +
2 + σ
p − 1

(
2 + σ
p − 1

+ 2 − N
)
.

Remark. For comparison purposes, we have made appropriate equivalence modifications to the
conclusions of Theorem 1.1 in the original paper [21]. A similar approach has been applied to the next
theorem.

In [22], Cheng et al. studied the following nonlinear elliptic equations:

−∆u =
λ

|x|α
u − |x|σup, x ∈ Ω\{0}, (1.2)

and obtained the existence, nonexistence, and asymptotic behavior of the positive solutions. One of
their main results can be stated here:

Theorem 1.2. Suppose that α > 2, θ + α > 0, and p > 1. Then the following two statements are true:
(i) If λ < 0, then equation (1.2) with the zero Dirichlet boundary condition has no positive solutions.
(ii) If λ > 0, then equation (1.2) with the zero Dirichlet boundary condition has a unique positive

solution u(x) satisfying
lim
|x|→0+

|x|α+θup−1(x) = λ. (1.3)

We should point out that the conclusion (ii) in Theorem 1.2 requires a slight modification: λ > 0
should be changed to λ > 0 being sufficiently large, because in the proof of Proposition 2.2 in their
article (see [22] for details), the condition λ > 0 being sufficiently large is necessary.

A natural question is if the conclusion (ii) in Theorem 1.2 holds, does there exist a more precise
lower bound λ∗ ≥ 0 for λ such that when λ > λ∗, (1.3) holds? This inspires us for further in-depth
research on this problem.

It is also worth noting that although equations (1.1) and (1.2) differ only in the use of the parameter
α and the number 2, from Theorem 1.1 and Theorem 1.2, we can find that their conclusions are
fundamentally distinct: The asymptotic limit of one depends not only on the parameter λ but also
on parameters p and σ , and the space dimension N, while the other depends solely on λ. In a sense,
α = 2 constitutes a critical value.

In this paper, we consider the elliptic equation with a generalized Hardy potential

−∆u =
λ

|x|α
u − b(x)g(u), x ∈ Ω\{0}, (1.4)
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where λ ∈ R, α > 0, Ω ⊂ RN is a bounded smooth domain and 0 ∈ Ω.
For convenience, we briefly record the following conditions, respectively. For the restrictions on

b(x) and g(u), the readers can refer to the literature [23].
(b1) b(x) is a positive continuous function in Ω\{0}.
(b2) There exist constants θ and m > 0 such that

lim
|x|→0

b(x)
|x|θ
= m.

(g1) g(0) = 0 and g(u)
u is an increasing function.

(g2) There exist constants q and k, with q > 1 and k > 0, such that

lim
u→∞

g(u)
uq = k.

(g3) There exist constants p and s, with p > 1 and s > 0, such that

lim
u→0

g(u)
up = s.

Our main results are stated as follows.

Theorem 1.3. Suppose that b(x) satisfies the conditions (b1) and (b2), g(u) satisfies the conditions (g1),
(g2) and (g3), then we have:

(i) If α > 2, θ+α > 0, q > 2(α+θ)
N−2 +1, and λ ≤ 0, then equation (1.4) with the zero Dirichlet boundary

condition has no positive solution.
(ii) If α > 2, θ + α > 0, and λ > 0, then equation (1.4) with the zero Dirichlet boundary condition

has at least one positive solution. And if λ > αα

4(α−2)α−2λ1 [B1(0)], then for any solutions u(x) of (1.4),
there exist two positive constants C3 and C4 such that

C4|x|−
α+θ
q−1 ≤ u(x) ≤ C3|x|−

α+θ
q−1 , as x→ 0.

That is, the equation (1.4) has Keller–Osserman solutions. Moreover, if g(u) is convex in u for u > 0,
then equation (1.4) with the zero Dirichlet boundary condition has a unique positive solution u(x) and
satisfies

lim
|x|→0+

|x|
α+θ
q−1 u(x) =

(
λ

mk

) 1
q−1

. (1.5)

Remark. (1) Recall that if there exist constants C1, C2 > 0 such that

C1|x|−
α+θ
q−1 ≤ u(x) ≤ C2|x|−

α+θ
q−1 ,

where x ∈ B1(0)\{0}, then the positive solution u(x) of equation (1.4) is called the Keller–Osserman
solution.

(2) Under different parameter conditions on α and θ, we present a result on the formal lower bound
λ∗ of λ, which provides a relatively comprehensive answer to the question we previously raised. In
addition, considering the limiting cases of the conditions (via a formal comparison) and comparing
them with α = 2, we find that the original condition λ > H is replaced by λ > λ1 [B1(0)]. It is easy to
see that λ1 [B1(0)] > H.
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(3) As we all know that in quantum mechanics, the first eigenvalue of the −△ operator represents
the ground state energy of the system. Since equation (1.4) is a standing wave equation derived from
the Schröinger equation with a Hardy potential, the condition λ > λ1 [B1(0)] in this theorem indicates
that if the equation admits a unique ground state solution with positive energy (or, equivalently, if its
ground state wave function u is positive), then the ground state energy λ1 must have a positive lower
bound, and the value of λ1 [B1(0)] can be interpreted as an estimate of this ground state energy.

Corollary 1.4. Suppose that b(x) satisfies the conditions (b1) and (b2) and g(u) satisfies the conditions
(g1), (g2), and (g3). Moreover, assume that g(u) is convex in u for u > 0. When m = 1, k = 1, α > 2,
and θ + α > 0, the following two statements are correct:

(i) If q > 2(α+θ)
N−2 + 1 and λ ≤ 0, then equation (1.4) with the zero Dirichlet boundary condition has

no positive solution.
(ii) If λ > 0 is sufficiently large, then equation (1.4) with the zero Dirichlet boundary condition has

a unique positive solution u(x) such that

lim
|x|→0+

|x|
α+θ
q−1 u(x) = λ

1
q−1 . (1.6)

Remark. The above corollary can be seen as a natural generalization of [22], as well as a useful
complement to the findings of [21] (see [21] and [22] for details).

2. Preliminaries

To facilitate the study, a brief description of the notations and citations used in this paper is provided
below:

Ωδ = {x ∈ Ω, |x| > δ}, Ωδ,ρ = {x ∈ Ω, δ < |x| < ρ},

Bδ(0) = {x ∈ RN : |x| < δ}.

Lemma 2.1. [24] Suppose that Ω is a bounded domain in RN , α(x) and β(x) are continuous functions
in Ω with ||α||L∞(Ω) < ∞, and β(x) is non–negative and not identically zero. Let u1, u2 ∈ C1(Ω) be
positive in Ω and satisfy in the weak sense

∆u1 + α(x)u1 − β(x)g(u1) ≤ 0 ≤ ∆u2 + α(x)u2 − β(x)g(u2), x ∈ Ω, (2.1)

and
lim supx→∂Ω[u2(x) − u1(x)] ≤ 0,

where g(u) is continuous and g(u)/u is strictly increasing and nonnegative for u in the range
min
Ω
{u1, u2} < u < max

Ω
{u1, u2}. Then u2 ≤ u1 in Ω.

Let λ1[c, b,Ω] denote the first eigenvalue of{
−∆u + c(x)u = λb(x)u, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(2.2)

where b(x), c(x) ∈ C(Ω), and b(x) is a positive function. In short, set

λ1[b,Ω] = λ1[0, b,Ω], λ1(Ω) = λ1[0, 1,Ω].

For the first eigenvalue λ1[c, b,Ω], the following three lemmas hold true.
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Lemma 2.2. [25] Let λ1[c, b,Ω] be defined as above.
(i) If b1(x) ≤ b2(x) in Ω, then λ1[c, b2,Ω] ≤ λ1[c, b1,Ω] and the equality holds if and only if

b1(x) = b2(x).
(ii) If c1(x) ≤ c2(x) in Ω, then λ1[c1, b,Ω] ≤ λ1[c2, b,Ω] and the equality holds if and only if

c1(x) = c2(x).
(iii) If 0 < δ1 < δ2 in Ω, then λ1[c, b,Ωδ1] ≤ λ1[c, b,Ωδ2] and λ1[c, b,Ωδ]→ λ1[c, b,Ω] as δ→ 0+.

Lemma 2.3. [26] The equation {
−∆u = λD(x)u, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(2.3)

has a positive strict supersolution if and only if

λ1[D,Ω] > λ.

Lemma 2.4. [25] For ϵ, δ > 0, we have
(i) lim
ε→0
λ1

[
1
|x|2+ϵ ,Ω

]
= H,

(ii) lim
ε→0
λ1

[
1
|x|2 ,Ω

δ
]
= H,

where H = (N−2)2

4 .

Now we give some lemmas that will be useful for further study.

Lemma 2.5. Assume that b(x) satisfies the conditions (b1) and (b2) and g(u) satisfies the conditions
(g1), (g2), and (g3). Then for any λ > 0, α > 2, and θ + α > 0, the following Dirichlet problem

−∆u − λ|x|−αu + b(x)g(u) = 0, x ∈ Ω\{0},
u > 0, x ∈ Ω\{0},
u = 0, x ∈ ∂Ω,

(2.4)

has a minimal positive solution and a maximal positive solution.

Proof. First, we prove that (2.4) has a maximal positive solution U(x). For any δ > 0, we consider
the following equation: 

−∆u − λ|x|−αu + b(x)g(u) = 0, x ∈ Ωδ,
u = +∞, |x| = δ,
u = 0, x ∈ ∂Ω.

(2.5)

By (b1) and (b2), when x ∈ Ωδ, b(x) is a positive continuous function, and it has a strictly positive
infimum. Notice that g(u) satisfies (g1) and (g2). From Theorem 6.18 in Du [26], we know that the
equation (2.5) has a unique positive solution, and we denote it by Uδ(x), obviously, for any 0 ≤ δ1 ≤ δ2,

Uδ1(x) = 0 = Uδ2(x) on ∂Ω, and Uδ1(x) < +∞ = Uδ2(x) on |x| = δ2. Then by Lemma 2.1, we have
Uδ1(x) ≤ Uδ2(x) for any x ∈ Ωδ2 . So, Uδ(x) is increasing in δ. When δ → 0+, Uδ(x) is monotonically
decreasing and Uδ(x) ≥ 0, thus

U(x) = lim
δ→0+

Uδ(x), x ∈ Ω\{0}.
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By the regularity argument of the elliptic equation, U(x) is a positive solution of (2.4). Suppose that
w is an arbitrary positive solution of (2.4). When x ∈ ∂Ω, we have w(x) = Uδ(x) = 0. And for any
δ > 0, when |x| = δ, w(x) < Uδ(x) = +∞. Thus, Lemma 2.1 implies that

w(x) ≤ Uδ(x), x ∈ Ωδ.

Let δ→ 0+, and we have
w(x) ≤ U(x), x ∈ Ω\{0}.

This shows that U(x) is the maximal positive solution of (2.4).
Now we show the existence of the minimal positive solution of the problem (2.4). For any λ > 0,

there exists ρ1 > 0 small enough such that
[

(N−2)2

4 + 1
]
ρα−2

1 < λ. According to the condition (b2),
there exists ρ2 > 0 such that m

2 |x|
θ ≤ b(x) ≤ 2m|x|θ for |x| < ρ2. According to Lemma 2.4, if we let

ρ = min{ρ1, ρ2}, we can find that δ0 ∈ (0, ρ), such that for every δ ∈ (0, δ0],

λ1

[
1
|x|2
,Ωδ,ρ

]
≤ λ1

[
1
|x|2
,Ωδ0,ρ

]
≤

(N − 2)2

4
+ 1. (2.6)

We can get, for such δ and ρ,

λ1

[
1
|x|2
,Ωδ,ρ

]
1
|x|2
≤

[
(N − 2)2

4
+ 1

]
ρα−2

|x|α
, for x ∈ Ωδ,ρ. (2.7)

Let ϕδ,ρ > 0 (in Ωδ,ρ) be the eigenfunction corresponding to λ1

[
1
|x|2 ,Ω

δ,ρ
]
. Notice that α > 2, then

−∆(ϕδ,ρ) = λ1

[
1
|x|2
,Ωδ,ρ

]
1
|x|2
ϕδ,ρ ≤

[
(N − 2)2

4
+ 1

]
ρα−2

|x|α
ϕδ,ρ <

λ

|x|α
ϕδ,ρ in Ωδ,ρ.

Define

uδ,ε =
{
εϕδ,ρ, x ∈ Ωδ,ρ,
0, x ∈ Ωδ\Ωδ,ρ.

(2.8)

By (g3), assuming ε > 0 is sufficiently small, the following two inequalities hold:

ε

[(
(N − 2)2

4
+ 1

)
ρα−2 − λ

]
+ 4msεpρθ+αϕ

p−1
δ,ρ ≤ 0,

s
2

up
δ,ε ≤ g(uδ,ε) ≤ 2sup

δ,ε for x ∈ Ωδ,ρ.

Through simple calculation, for any x ∈ Ωδ,ρ, we have

−∆uδ,ε −
λ
|x|αuδ,ε + b(x)g(uδ,ε) = −∆(εϕδ,ρ) − λ

|x|α (εϕδ,ρ) + b(x)g(εϕδ,ρ)
≤
ϕδ,ρ
|x|α

{
ε
[(

(N−2)2

4 + 1
)
ρα−2 − λ

]
+ 4msεpρθ+αϕ

p−1
δ,ρ

}
.

Therefore
−∆uδ,ε −

λ

|x|α
uδ,ε + b(x)g(uδ,ε) ≤ 0, x ∈ Ωδ,ρ. (2.9)
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When x ∈ Ωδ\Ωδ,ρ, by direct calculation,

−∆uδ,ε −
λ

|x|α
uδ,ε + b(x)g(uδ,ε) = 0. (2.10)

So, by (2.9) and (2.10), we have

−∆uδ,ε −
λ

|x|α
uδ,ε + b(x)g(uδ,ε) ≤ 0, x ∈ Ωδ. (2.11)

Define

uδ,M =
{

Mϕδ,ρ, x ∈ Ωδ,ρ,
0, x ∈ Ωδ\Ωδ,ρ.

(2.12)

By (g2), when M is sufficiently large, we have

k
2

uq
δ,M ≤ g(uδ,M) ≤ 2kuq

δ,M for any x ∈ Ωδ,ρ

and
−λMϕδ,ρ +

mk
4

Mqδθ+αϕ
q
δ,ρ ≥ 0 for any x ∈ Ωδ,ρ.

A quick calculation gives

−∆uδ,M − λ
|x|αuδ,M + b(x)g(uδ,M) = −∆(Mϕδ,ρ) − λ

|x|α (Mϕδ,ρ) + b(x)g(Mϕδ,ρ)
≥ Mλ1

[
1
|x|2 ,Ω

δ,ρ
]

1
|x|2ϕδ,ρ −

λ
|x|α (Mϕδ,ρ) + mk

4 Mq|x|θϕq
δ,ρ

≥ 1
|x|α

[
−λMϕδ,ρ + mk

4 Mqδθ+αϕ
q
δ,ρ

]
for any x ∈ Ωδ,ρ. Thus

−∆uδ,M −
λ

|x|α
uδ,M + b(x)g(uδ,M) ≥ 0, x ∈ Ωδ,ρ. (2.13)

When x ∈ Ωδ\Ωδ,ρ, through rigorous computation,

−∆uδ,M −
λ

|x|α
uδ,M + b(x)g(uδ,M) = 0. (2.14)

So, by (2.13) and (2.14), we can obtain

−∆uδ,M −
λ

|x|α
uδ,M + b(x)g(uδ,M) ≥ 0, x ∈ Ωδ. (2.15)

From the above derivation, uδ,M(x) and uδ,ε(x) are the upper and lower solutions of the following
equation: {

−∆u − λ|x|−αu + b(x)g(u) = 0, x ∈ Ωδ,
u = 0, x ∈ ∂Ωδ.

(2.16)

According to the upper and lower solution theorem [24] and Lemma 2.1, we know that equation (2.16)
has a unique positive solution, denoted as uδ(x). So, we have uδ,ε(x) ≤ uδ(x) ≤ uδ,M(x). For any
0 ≤ δ1 ≤ δ2 < ρ, note that for any x ∈ ∂Ω, uδ1(x) = 0 = uδ2(x). When |x| = δ2, uδ1(x) > 0 = uδ2(x).
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Thus, by Lemma 2.1, for any x ∈ Ωδ2 , we have uδ1(x) ≥ uδ2(x). So, uδ increases as δ decreases. When
δ→ 0+, u(x) is monotonically increasing with upper bound U(x), so

u(x) = lim
δ→0+

uδ(x), x ∈ Ω\{0}.

By the regularity argument of the elliptic equation, u(x) is a solution of equation (2.4). Suppose that
v(x) is an arbitrary positive solution of (2.4). When x ∈ ∂Ω, v(x) = 0 = uδ(x). When |x| = δ,
v(x) > 0 = uδ(x). Using Lemma 2.1, when x ∈ Ωδ, we have uδ(x) ≤ v(x). Letting δ→ 0+, we have

u(x) ≤ v(x), x ∈ Ω\{0}.

This shows that u(x) is the minimal positive solution of (2.4).

Lemma 2.6. Suppose b(x) satisfies the conditions (b1) and (b2) and g(u) satisfies the conditions (g1)
and (g2). For any α > 2 and λ > 0, there exists a constant C3 > 0 such that for any positive solution
u(x) of equation (1.4),

u(x) ≤ C3|x|
−(α+θ)

q−1 , as |x| → 0. (2.17)

Proof. According to Lemma 2.5, if u(x) is a solution of equation (1.4), then u(x) ≤ U(x). In order
to prove that all positive solutions u(x) of equation (1.4) satisfy (2.17), it is sufficient to show that U(x)
satisfies (2.17) (replace u(x) by U(x) in (2.17)).

By (b2) and (g2), for any ε > 0, there exists 0 < δ < 1 such that (m − ε)|x|θ ≤ b(x) ≤ (m + ε)|x|θ and
(k − ε)U(x)q ≤ g(U(x)) ≤ (k + ε)U(x)q for x ∈ Bδ(0)\{0} ⊂ Ω.

For any x0 ∈ Ω\{0} and |x0| <
βδ

β+1 , where β > 0 is a constant and denote

D(x0) =
{

x0 +
|x0|

α
2

β
x : x ∈ B1(0)

}
.

Since α > 2 and δ < 1, a straightforward observation shows that

β − 1
β
|x0| ≤

∣∣∣∣∣∣x0 +
|x0|

α
2

β
x

∣∣∣∣∣∣ ≤ β + 1
β
|x0|, x ∈ B1(0).

From the above inequality, we can see that D(x0) ⊂ Ω\{0}.
When θ ≥ 0 and y ∈ D(x0), we have

−∆U(y) = λ|y|−αU(y) − b(y)g(U(y))
≤ λ|y|−αU(y) − (m − ε)(k − ε)|y|θU(y)q

≤ λ
(
β−1
β

)−α
|x0|
−αU(y) − (m − ε)(k − ε) ·

(
β−1
β

)θ
|x0|
θU(y)q.

Define

V(x) := |x0|
α+θ
q−1 U

(
x0 +
|x0|

α
2

β
x
)
, x ∈ B1(0).

It is easy to see that

−∆V(x) = −β−2|x0|
α+ α+θq−1∆U

(
x0 +

|x0 |
α
2

β
x
)

≤ λ · β−2
(
β−1
β

)−α
|x0|

α+θ
q−1 U

(
x0 +

|x0 |
α
2

β
x
)
− (m − ε)(k − ε) · β−2

(
β−1
β

)θ
|x0|

α+θ
q−1 ·qUq

(
x0 +

|x0 |
α
2

β
x
)

= λ · β−2
(
β−1
β

)−α
V(x) − (m − ε)(k − ε) · β−2

(
β−1
β

)θ
V(x)q.
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We now analyze the fundamental equation: −∆W1 = λ · β
−2

(
β−1
β

)−α
W1 − (m − ε)(k − ε) · β−2

(
β−1
β

)θ
Wq

1 , x ∈ B1(0),
W1 = +∞, x ∈ ∂B1(0).

(2.18)

By Theorem 6.15 in [26], the equation (2.18) has a unique positive solution W1(x). By Lemma 2.1, we
have V(x) ≤ W1(x) for any x ∈ B1(0). So, we get |x0|

α+θ
q−1 U(x0) ≤ W1(0).

That is,
U(x0) ≤ W1(0)|x0|

− α+θq−1 .

By the arbitrariness of x0, we know that there exist positive constants C3 and δ0 such that

U(x) ≤ C3|x|−
α+θ
q−1 , ∀x ∈ Bδ0(0)\{0},

which shows that when θ ≥ 0, u(x) satisfies (2.17).
Similarly, we can prove that when −α < θ < 0, u(x) also satisfies (2.17). This completes the proof.
Next, we will explore the blow-up behavior of a positive solution at the origin by considering the

following ordinary differential equation(ODE):

−u′′ −
N − 1

r
u′ = λ

u
rα
− b(r)g(u), r ∈ (0,∞). (2.19)

Lemma 2.7. Suppose b(x) is a radial function and satisfies the conditions (b1) and (b2) and g(u)
satisfies the conditions (g1) and (g2). Also suppose that λ > H, α > 2, and θ + α > 0. Then there exists
a small ρ > 0 such that u′(r) ≤ 0 in (0, ρ) and u(x) blows up at the origin, where u(x) is the minimal
positive solution u(x) of equation (2.4).

Proof. From (b2), for any 0 < ε < m, there exists a τ(ε)(0 < τ(ε) < 1), which is sufficiently small
such that

(m − ϵ)|x|θ ≤ b(x) ≤ (m + ϵ)|x|θ, for 0 < |x| < τ(ε).

For any 0 < ρ < τ(ε), let uδ,ρ(x) be a unique positive solution of the following equation:{
−∆u = λ u

|x|α − b(x)g(u), x ∈ Ωδ,ρ,
u = 0, |x| = ρ or δ.

(2.20)

From Lemma 2.1, it is easy to see that, u(x) ≥ uδ,ρ(x). Let uρ(x) = limδ→0 uδ,ρ(x). Obviously, uρ(x) is a
radially symmetric function, and so we denote uρ(r) = uρ(x) with |x| = r.

Firstly we claim that u′ρ(r) ≤ 0 for r ∈ (0, ρ). Define

r0 = inf{r : u′ρ(s) ≤ 0, s ∈ (r, ρ]}.

Notice that uρ(r) > 0 for r ∈ (0, ρ) and uρ(ρ) = 0, thus by virtue of the strong maximum principle [27],
we see u′ρ(r) < 0, when r(< ρ) is close to ρ. So, r0 < ρ. Obviously, if r0 = 0, then the claim is valid.
Now we suppose that r0 > 0 and divided the proof into two cases.

Case 1. u′ρ(r) ≥ 0 for r ∈ (0, r0). This implies that

lim
r→0

uρ(r) ∈ [0,∞).
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By θ + α > 0, we have
−|x|α∆uρ = λuρ − |x|

αb(x)g(uρ)
≥ λuρ − (m + ε)|x|θ+αg(uρ)
= (λ + o(1))uρ.

(2.21)

Since λ > H, from the above inequality, it follows that there exists τ1 ∈ (0, ρ) such that

−(|x|α)∆uρ >
(λ + H)

2
uρ, |x| ∈ (0, τ1).

Hence, for any ϵ ∈ (0, τ1), uρ satisfies
−∆uρ >

λ+H
2

uρ
|x|α , x ∈ Ωϵ,τ1 ,

uρ(x) > 0, |x| = ϵ,
uρ(x) > 0, |x| = τ1.

(2.22)

Therefore, uρ is a positive strict supersolution of{
−∆u = λ+H

2
u
|x|α , x ∈ Ωϵ,τ1 ,

u(x) = 0, x = τ or ϵ.

Applying Lemma 2.3, we have λ1

[
1
|x|α ,Ω

ϵ,τ1
]
> λ+H

2 > H for any ϵ ∈ (0, τ1). On the other hand, from
Lemma 2.2, notice that α > 2, |x| < 1, and we have

λ1

[
1
|x|α
,Ωϵ,τ1

]
< λ1

[
1
|x|2
,Ωϵ,τ1

]
.

By Lemma 2.4, λ1

[
1
|x|2 ,Ω

ϵ,τ1
]
→ H as ϵ → 0+, which yields a contradiction.

Case 2. There exist r∗ < r∗ < r0 such that

u′ρ(r∗) < 0, u′ρ(r
∗) > 0.

Then there exist r ∈ (r∗, r∗) satisfying
u′ρ(r) = 0.

Without loss of generality, we further assume that

u′ρ(r) < 0, for r ∈ (r∗, r) ∪ (r0, r0 + τ2), (2.23)

u′ρ(r) > 0, for r ∈ (r, r0), (2.24)

where τ2 > 0 is sufficiently small such that r0 + τ2 < ρ.

By (2.23) and (2.24), we can choose r1 ∈ (r, r0) and r2 ∈ (r0, r0 + τ2) such that

uρ(r1) < uρ(r2), u′′ρ (r1) > 0, u′′ρ (r2) < 0. (2.25)

In fact, we only need to choose r1 sufficiently close to r and r2 sufficiently close to r0.
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From (2.23) and (2.25), we have

−u′′ρ (r) −
N − 1

r
u′(r) > 0, r = r2.

Then by (2.19), we obtain
λ

rα2
uρ(r2) − b(r2)g(uρ(r2)) > 0.

Thus,
g(uρ(r2))

uρ(r2)
<

λ

rα2 b(r2)
. (2.26)

Similarly, we can obtain
g(uρ(r1))

uρ(r1)
>

λ

rα1 b(r1)
. (2.27)

Notice that θ + α > 0, then (2.26) and (2.27) lead to

g(uρ(r2))

uρ(r2)
<

g(uρ(r1))

uρ(r1)
.

In view of uρ(r2) > uρ(r1) and condition (g1), this is a contradiction.
By the regularity argument of the quasilinear elliptic equations, uρ(r) converges to u(r) in C1

loc(0, ρ].
So, u′ρ(r) ≤ 0 for any ρ > 0 implies u′(r) ≤ 0 for all r ∈ (0, ρ), and limr→0 u(r) ∈ (0,∞] is well–defined.
Similar to that of Case 1, we can derive u(r)→ ∞ as r → 0, i.e., u(x) blows up at the origin.

Remark. During the proof of Lemma 2.7, if we first apply conditions (b1) and (b2) on b(x) to
estimate equation (2.20), obtaining inequality (2.20), and then use the comparison principle on the
solution of inequality (2.20), we can remove the constraint that b(x) must be a radial function. Hence,
we have: In Lemma 2.7, if we remove the restriction that b(x) is a radial function, the conclusion that
u(x) blows up at the origin in Lemma 2.7 still holds true (note that u(x) is not necessarily radial at this
point).

Lemma 2.8. Suppose that b(x) satisfies the conditions (b1) and (b2) and g(u) satisfies the conditions
(g1) and (g2). If λ > αα

4(α−2)α−2λ1 [B1(0)], then there exists a constant C4 > 0 such that

u(x) ≥ C4|x|
−(α+θ)

q−1 , as |x| → 0 (2.28)

for any positive solution u(x) of equation (2.4).

Proof. Notice that λ > αα

4(α−2)α−2λ1 [B1(0)] implies that λ > H. According to Lemma 2.7, u(x) blows
up at the origin. By (g2) and (b2), there exists a δ0(0 < δ0 < 1) such that k

2uq(x) ≤ g(u(x)) ≤ 2kuq(x)
and m

2 |x|
θ ≤ b(x) ≤ 2m|x|θ for x ∈ Bδ0(0)\{0} ⊂ Ω\{0}. Similarly, when θ ≥ 0, for any y ∈ D(x0) and

|x0| <
βδ0
β+1 , where β > 0 is a undetermined constant, we have

−∆u(y) = λ|y|−αu(y) − b(y)g(u(y))
≥ λ|y|−αu(y) − 4mk|y|θuq(y)

≥
(
β+1
β

)−α
λ|x0|

−αu(y) − 4
(
β+1
β

)θ
mk|x0|

θuq(y).
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Define

V1(x) := |x0|
α+θ
q−1 u

(
x0 +
|x0|

α
2

β
x
)
, x ∈ B1(0).

Then for any x ∈ B1(0), we have

−∆V1(x) = −β−2|x0|
α+ α+θq−1∆u

(
x0 +

|x0 |
α
2

β
x
)

≥ λ · β−2
(
β+1
β

)−α
|x0|

α+θ
q−1 u

(
x0 +

|x0 |
α
2

β
x
)
− 4β−2

(
β+1
β

)θ
mk|x0|

α+θ
q−1 ·quq

(
x0 +

|x0 |
α
2

β
x
)

= λ · β−2
(
β+1
β

)−α
V1(x) − 4β−2

(
β+1
β

)θ
mkVq

1 (x).

Consider the following equation: −∆W3 = λ · β
−2

(
β+1
β

)−α
W3 − 4β−2

(
β+1
β

)θ
mkWq

3 , x ∈ B1(0),
W3 = 0, x ∈ ∂B1(0).

(2.29)

By Theorem 5.1 in [26], we know that when λ > (β+1)αλ1[B1(0)]
βα−2 , the equation (2.29) has a unique positive

solution W3(x). By Lemma 2.1, we have W3(x) ≤ V1(x) for x ∈ B1(0). Therefore, we conclude
W3(0) ≤ V1(0), that is,

u(x0) ≥ W3(0)|x0|
− α+θq−1 .

By the arbitrariness of x0, there exists a positive constant C4. For any positive solution u(x) of (2.4),
we obtain

u(x) ≥ C4|x|−
α+θ
q−1 , ∀x ∈ Bδ0(0)\{0}.

Notice that
inf
β>0

(β + 1)α

βα−2 =
αα

4(α − 2)α−2 ,

which shows that when λ > αα

4(α−2)α−2λ1 [B1(0)] holds, u(x) satisfies (2.28). This completes the proof.

3. Proof of the main result

3.1. Proof of (i) in Theorem 1.3:

Lemma 3.1. Suppose that α > 2, b(x) satisfies the condition (b1) and (b2) and g(u) satisfies the
condition (g1), (g2), and (g3). If q > 2(α+θ)

N−2 + 1, λ ≤ 0, then the following Dirichlet problem
−∆u = λ|x|−αu − b(x)g(u), x ∈ Ω\{0},
u > 0, x ∈ Ω\{0},
u = 0, x ∈ ∂Ω,

(3.1)

has no solution.

Proof. Assume that the equation (3.1) has a positive solution u(x). Multiplying both sides of the
equation (3.1) by u and integrating over Ω\Br(0) gives∫

Ω\Br(0)
−∆u · udx =

∫
Ω\Br(0)

[
λ|x|−αu2 − b(x)g(u)u

]
dx, (3.2)
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where 0 < r < 1/2 sufficiently small such that B2r(0) ⊂ Ω. Then by the divergence formula, we obtain∫
Ω\Br(0)

|▽u|2dx −
∫
∂Br(0)

u
∂u
∂v

dS =
∫
Ω\Br(0)

[
λ|x|−αu2 − b(x)g(u)u

]
dx, (3.3)

where v represents the unit outer normal vector on ∂Br(0).
First, notice that g(u) satisfies (g1) and (g3), then g(0) = 0 and g(u) > 0 for u > 0. Also notice that

b(x) > 0 in Ω\Br(0), which implies that

−

∫
Ω\Br(0)

b(x)g(u)udx < 0, (3.4)

therefore by (3.3), we have∫
Ω\Br(0)

|▽u|2dx −
∫
∂Br(0)

u
∂u
∂v

dS <
∫
Ω\Br(0)

λ|x|−αu2dx. (3.5)

Notice that q > 2(α+θ)
N−2 + 1 implies that u ∈ H1

0(Ω) (notice that Lemma 2.6 also holds when λ ≤ 0),
thus

lim
r→0+

∫
∂Br(0)

u
∂u
∂v

dS = lim
r→0+

∫
∂Br(0)

u∇u ·
x
r

dS = 0.

Since u(x) is a positive continuous function, the first term of the left side for equation (3.3) is greater
than zero, but when λ ≤ 0, the right side of equation (3.5) is less than zero. This contradiction shows
that the equation (3.1) has no solution when λ ≤ 0.

From Lemma 3.1, the conclusion of Theorem 1.3 (i) holds true.
Remark. (1) If the solution u to (3.1) satisfies u ∈ C2(Ω\{0})∩H1

0(Ω), then condition q > 2(α+θ)
N−2 + 1

in the above lemma can be deleted.
(2) When q ≤ 2(α+θ)

N−2 +1, it would be a highly meaningful research topic to provide specific examples
illustrating that equation (3.1) admits a classical solution(u ∈ C2(Ω\{0})) but not a weak solution(u ∈
H1

0(Ω)).

3.2. Proof of (ii) in Theorem 1.3

The assertion of Theorem 1.3 (ii) follows by combining Lemma 3.2 - Lemma 3.4.

Lemma 3.2. Assume that λ > αα

4(α−2)α−2λ1 [B1(0)], b(x) satisfies the conditions (b1) and (b2) and g(u)
satisfies the conditions (g1), (g2) , and (g3). If u(x) is any positive solution of the problem (3.1), then
we have

lim inf
|x|→0+

|x|
α+θ
q−1 u(x) ≥

(
λ

mk

) 1
q−1

. (3.6)

Proof. By (b2), we know for any ε > 0, there exists a δ1(δ1 > 0) such that when 0 < |x| < δ1,

(m − ε)|x|θ ≤ b(x) ≤ (m + ε)|x|θ.

For any sufficiently small τ ∈ (0, λ
(m+ε)(k+ε) ), let

ξτ =

[
λ

(m + ε)(k + ε)
− τ

] 1
q−1

.
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Define φ(r) = 1
Cr+1 , r ≤ R, where R ∈ (0, 1) and C is a positive constant, then

φ′(r) = −
C

(Cr + 1)2 , φ
′′(r) =

2C2

(Cr + 1)3 .

Let l = α+θq−1 , and define a function v(x) = ξτ|x|−lφ(|x|). Obviously v(x) is a radial function, and denote
v(r) = v(x). Then

v′(r) = −ξτlr−l−1φ(r) + ξτr−lφ′(r), 0 < r < R

and
v′′(r) = ξτ(l + 1)lr−l−2φ(r) − 2ξτlr−l−1φ′(r) + ξτr−lφ′′(r), 0 < r < R.

Notice that
lim
|x|→0+

v(x) = +∞.

By (g2), we can obtain that there exists a positive constant δ2(δ2 < δ1) such that

(k − ε)vq(x) ≤ g(v(x)) ≤ (k + ε)vq(x), for 0 < |x| < δ2.

From the above inequalities, we deduce

−∆v − λ|x|−αv + b(x)g(v)
≤ −

(
v′′(r) + N−1

r v′(r)
)
− λ|x|−αv + (m + ε)(k + ε)|x|θvq

= −ξτ(l + 1)lr−l−2φ(r) + 2ξτlr−l−1φ′(r) − ξτr−lφ′′(r) + ξτ(N − 1)lr−l−2φ(r)
−ξτ(N − 1)r−l−1φ′(r) − λξτr−α−lφ(r) + (m + ε)(k + ε)rθ−lqξ

q
τφ

q(r)
≤ ξτr−l−2φ(r)

[
−(l + 1)l − C(2l−N+1)r

1+Cr + (N − 1)l − λr2−α + (m + ε)(k + ε)ξq−1
τ r2−α

]
≤ ξτlr−l−2φ(r)

[
(N − l − 2)l + N − 1 − (m + ε)(k + ε)τr2−α

]
≤ ξτlr−l−2φ(r)

[
(N − l − 1)(l + 1) − (m + ε)(k + ε)τr2−α

]
.

Since α > 2, we can take R small enough (R is independent of C) such that

(N − 1)l + 1 − (m + ε)(k + ε)τr2−α < 0, r ∈ (0,R).

Thus,
−∆v − λ|x|−αv + b(x)g(v) < 0, x ∈ BR(0)\{0}.

Define a new function vϵ , where ϵ ∈ (0,R) and

vϵ(x) = v(r + ϵ), r = |x| ∈ (0,R − ϵ).

So,
−∆vϵ(x) − λ|x|−αvϵ(x) + b(x)g(vϵ(x)) < 0, for x ∈ BR−ϵ(0)\{0}.

Since u(x) blows up at the origin, for any ϵ > 0 sufficiently small, when r → 0,

vϵ(x) < u(x).

Conversely, by selecting C sufficiently large, we ensure that

vϵ(x) < u(x), for r = R − ϵ.

AIMS Mathematics Volume 11, Issue 2, 3441–3463.



3455

Applying Lemma 2.1, we obtain

vϵ(x) ≤ u(x), x ∈ BR−ϵ(0)\{0}.

So when x ∈ BR(0)\{0}, we have
u(x) ≥ v(x), x ∈ BR(0)\{0}.

By the arbitrariness of ε and τ, we know

lim inf
|x|→0+

|x|
α+θ
q−1 u(x) ≥

(
λ

mk

) 1
q−1

.

Lemma 3.3. Assume that b(x) satisfies the conditions (b1) and (b2) and g(u) satisfies the conditions
(g1), (g2), and (g3). Moreover, assume that g(u) is convex in u for u > 0. If λ > αα

4(α−2)α−2λ1 [B1(0)], then
equation (3.1) has a unique solution.

Proof. Combining Lemma 2.5, Lemma 2.6, and Lemma 2.8, we conclude that there exist δ(δ > 0)
and C5,C6(C5 < C6) such that for any x ∈ Bδ(0)\{0},

C5|x|−
α+θ
q−1 ≤ u(x) ≤ U(x) ≤ C6|x|−

α+θ
q−1 .

If u(x) , U(x), a direct application of the strong maximum principle gives u(x) < U(x) in Ω\{0}.
Define

v = u −
1
2c

(U − u),

where c > 0 is a constant such that U ≤ cu. We have

u > v ≥
c + 1

2c
u,

2c
2c + 1

v +
1

2c + 1
U = u.

Denote f (x, t) = −λ|x|−αt + b(x)g(t). Since g(u) is convex in u for u > 0, then for any x ∈ Ω\{0}, f (x, t)
is convex in t for t > 0. Therefore,

f (x, u) ≤
2c

2c + 1
f (x, v) +

1
2c + 1

f (x,U).

Thus,

−∆v = −
2c + 1

2c
f (x, u) +

1
2c

f (x,U) ≥ − f (x, v),

so,
−∆v ≥ λ|x|−αv − b(x)g(v), x ∈ Ω.

When x ∈ Ωδ, we have −∆v − λ|x|−αv + b(x)g(v) ≥ 0 = −∆uδ − λ|x|
−αuδ + b(x)g(uδ). When x ∈ ∂Ω,

we have v(x) = 0 = uδ(x). When |x| = δ, we have v(x) ≥ c+1
2c u(x) > 0 = uδ(x), where uδ(x) is the

unique positive solution of the equation (2.16). Using Lemma 2.1, when x ∈ Ωδ, we have v(x) ≥ uδ(x).
Letting δ → 0+, we get u(x) ≤ v(x), which is a contradiction with u(x) > v(x). So, the equation (3.1)
has a unique positive solution.

Lemma 3.4. Let λ > 0, α > 2, and α + θ > 0. b(x) satisfies the conditions (b1) and (b2) and g(u)
satisfies the conditions (g1) , (g2), and (g3). Suppose that u(x) is the unique positive solution of the
problem (3.1). Then we have

lim sup
|x|→0+

|x|
α+θ
q−1 u(x) ≤

(
λ

mk

) 1
q−1

.

The proof is similar to that of Lemma 3.2; we omit it here.
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4. Numerical example

Next, we provide numerical examples to validate Theorem 1.1(ii). For convenience, we assume that
N = 4, Ω = B1(0) (in this case, λ1 [B1(0)] ≈ (3.8317)2 < 16), b(x) = m|x|θ and g(u) = kuq, which
shows that b(x) satisfies the conditions (b1) and (b2) and g(u) satisfies the conditions (g1), (g2), and
(g3). Let u(x) = u(ρ) and |x| = ρ, then (3.1) can be transformed into the following second–order ODEs
with singular coefficients:

−u′′(ρ) − N−1
ρ

u′(ρ) = λ
ρα

u(ρ) − mkρθuq, ρ ∈ (0, 1),
u(ρ) > 0, ρ ∈ (0, 1),
u(1) = 0.

(4.1)

To utilize numerical approaches in solving ODEs, we assume that ρ = 1 − t and set u(ρ) = y1(t),
u′(ρ) = −y2(t), then (4.1) can be transformed into

y′1(t) = y2(t),
y′2(t) = 3

1−t y2(t) − λ
(1−t)α y1(t) + mk(1 − t)θy1(t)q, t ∈ (0, 1),

y1(0) = 0.
(4.2)

Example 1. Assume that λ = 108, θ = 1, q = 2, m = 1, k = 2 and α = 3. A simple verification shows
that the hypotheses of Theorem 1.3 are satisfied. Based on Theorem 1.3, we have

lim
t→1−

y1(t)

(1 − t)−
α+θ
q−1 ( λmk )

1
q−1

= 1. (4.3)

Let

v(t) = (1 − t)−
α+θ
q−1

(
λ

mk

) 1
q−1

. (4.4)

In order to plot the graph of the numerical solution y1(t) of (4.2), we still need to know y2(0).
However, from the original equation (3.1), we cannot obtain any information about it. To address this
problem, we will adopt an alternative approach: Set y2(0) = −u′(1) = −a, and regard a as a parameter.
We shall then investigate the following question: For which a does the solution u of Eq (4.1) with
initial condition u(1) = 0 and u′(1) = −a possess a maximal interval of existence (0, 1] and satisfy
(4.3)?

First, using numerical observation, we examine how the solution to equation (4.1) changes with
u′(1)(i.e., −a) near the origin. The graph of the numerical solution u(t) for Eq (4.1) can be found in
Figure 1 with initial condition u(1) = 0 and u′(1) = −500. Under this initial condition, we find the
solution oscillating near the origin. While u′(1) is sufficiently small, the numerical solution u(t) of
Eq (4.1) will blow up at ρ0 > 0. As can be seen from Figure 2, the maximal existence interval of the
solution decreases as a decreases. By the continuous dependence of solutions on initial data, there
exists a unique a0 < 0 such that the maximal existence interval of the solution to Eq (4.1) is (0, 1], and
the solution experiences blow-up at the origin. Obviously, if we denote

A = {a|the solution u of Eq (4.1) with u′(1) = a < 0 oscillating near the origin},

B = {a|the solution u of Eq (4.1) with u′(1) = a < 0 blow up at ρ0 > 0}
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from Figure 2, we can see that

a0 = inf A = sup B.

Figure 1. The solution of (4.1)
oscillating near the origin for u′(1) =
−500.

Figure 2. Comparison diagram of
the solution of (4.1) blow-up near the
origin when u′(1) = −650, u′(1) =
−700, u′(1) = −750 and u′(1) = −800,
respectively.

In the following, we will present a method for determining the aforementioned critical value of a0.

Let w(t) = y1(t)(1 − t)4, then w(t) satisfies the following ODE:

(1 − t)3w′′ + 5(1 − t)2w′ + [8(1 − t) + 108] w − 2w2 = 0. (4.5)

From (4.2) and (4.3), we know that

w(0) = 0 and w(1) = 54. (4.6)

Using numerical methods for solving two–point boundary value problems (BVPs) of ODEs,
we readily plot the solution of Eq (4.5) under boundary conditions (4.6) as shown in Figure 3.
Simultaneously, we can obtain w′(0) ≈ 612.9906313105.

On the other hand,

w′(0) = y′1(0) = y2(0) = −a0,

which implies that

a0 ≈ −612.9906313105 ≈ −613. (4.7)

To verify the correctness of (4.7), we conversely utilize Eq (4.2) along with the initial conditions
y2(0) = −a0 ≈ 613 to generate its numerical solution shown in Figure 4. From Figure 4, it is evident
that this parameter a0 satisfies the required criteria.
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Figure 3. The numerical solution of
BVP (4.5) with (4.6).

Figure 4. The numerical solution u(ρ)
of (4.1) for a0 ≈ −613.

Now we can use the same methods mentioned above to consider the general case.

Let w1(t) = y1(t)(1 − t)
α+θ
q−1 , then w(t) satisfies the following ODE:

(1 − t)2w′′1 + (2l − N + 1)(1 − t)w′1 +
[
l2 + 2 − N + λ(1 − t)2−α

]
w1 − mk(1 − t)2−αwq

1 = 0, (4.8)

where l = α+θq−1 . From (4.2) and (4.3), we know that

w1(0) = 0 and w1(1) =
(
λ

mk

) 1
q−1

. (4.9)

Example 2. Assume that θ = −1, λ = 128, q = 2, m = 1, k = 2, α = 3 and N = 4. It is easy to see
that Theorem 1.3 still holds. The comparative diagram of u(ρ) and v(ρ) is provided in Figure 5. From
Figure 5, we can see that when ρ → 0, u(ρ) and v(ρ) are equivalent infinitely large quantities. This
provides further corroboration of the theoretical results.
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Figure 5. The comparative diagram of u(ρ) and v(ρ).

5. Conclusions

In this paper, we study the nonlinear elliptic equations with generalized Hardy potential function
|x|−α. Using the method of upper and lower solutions and the principle of comparison, we obtain
the existence of maximum and minimum solutions with the zero Dirichlet boundary condition.
Furthermore, the blow-up behavior of the solution near the origin has been obtained. Also, the
uniqueness of the positive solution has been obtained. The above method can be also used for the
case when α = 2, m = 1, and k = 1.

By Lemma 3.2 to Lemma 3.4, we can easily see that the asymptotic behavior of the solution for
(3.1) at the origin does not depend on N; it only depends on the asymptotic behavior of b(x) at the
origin and the asymptotic behavior of g(u) at infinity and λ. This conclusion differs fundamentally
from the case when α = 2 (see [19] and [21] for details).

Now, we discuss how the solution of equation (4.2) changes at the origin when the parameters vary.
We only consider the single-parameter variation case.

First, from (4.3), we can see that u(x) increases near the origin as λ increases.
Second, we consider the variation of the solution with the variation of parameter q under each of

the following three cases: 0 < λ
mk < 1, λmk = 1, and λ

mk > 1, respectively. In each case, notice that (4.3)
holds and

∂v
∂q
= (1 − t)−

α+θ
q−1

(
λ

mk

) 1
q−1 1

(q − 1)2

[
(α + θ) ln(1 − t) − ln

λ

mk

]
< 0, as t → 1−,
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thus the blow-up rate of the solution decreases as q increases.
From Lemma 2.7, we see that when λ > H, the minimal positive solution u(x) of equation (2.4)

blows up at the origin. In order to obtain sharper estimates of the solution at the origin, while keeping
all other assumptions unchanged, we impose additional restrictions on λ (see Lemma 2.8). However, if
we only replace λ = 108 by λ = 4 in Example 1 (see Figure 6), the numerical computations demonstrate
that such restrictions can potentially be unnecessary, thus we may have:

Conjecture: Suppose that α > 2 and θ + α > 0, b(x) satisfies the conditions (b1) and (b2), and g(u)
satisfies the conditions (g1) , (g2), and (g3). Moreover, assume that g(u) is convex in u for u > 0. If
λ > H, then equation (1.4) with the zero Dirichlet boundary condition has a unique positive solution
u(x) satisfying (1.5).

On the other hand, from our analysis of the numerical solution in Example 1, we can arrive at the
following conjecture:

Conjecture: Suppose that α > 2 and θ + α > 0, b(x) satisfies the conditions (b1) and (b2), and g(u)
satisfies the conditions (g1) , (g2), and (g3). Moreover, assume that g(u) is convex in u for u > 0. If
λ > H, then there exists a unique a0 < 0 such that

(1) For a > a0, the solution to radial equation (4.1) with u′(1) = −a is oscillatory about u = 0 on
its maximal existence interval (0, 1].

(2) For a ≤ a0, the solution of radial equation (4.1) with u′(1) = −a exhibits singular behavior near
the origin, that is, ∃ρ0 ≥ 0 satisfies

lim
ρ→ρ+0

u(ρ) = +∞,

so its maximal existence interval is (ρ0, 1].

Figure 6. The numerical solution u(ρ) of (4.1) for a0 = −27.942090834.

In this paper, we restrict our discussion to the case α > 2. For the case 0 < α < 2, we conjecture
that the asymptotic behavior of solutions near the origin will be more complex; nevertheless, the
methodology developed above can be adapted to offer a viable approach for such investigations. We
designate the conjectures mentioned above as open problems for further study.
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