In this paper, we show the subalgebra lattice of an algebra determined by two nontrivial unary relations and a nontrivial equivalence relation on a finite set. Moreover, we use an algorithm to indicate isomorphic covering graphs of subalgebra lattices. This gives us a lower bound of the number of categorically equivalent classes of clones on a given finite set.
Citation: Worakrit Supaporn, Passawan Noppakaew. Subalgebra lattices of algebras determined by two unary relations and an equivalence relation[J]. AIMS Mathematics, 2026, 11(2): 3160-3170. doi: 10.3934/math.2026126
In this paper, we show the subalgebra lattice of an algebra determined by two nontrivial unary relations and a nontrivial equivalence relation on a finite set. Moreover, we use an algorithm to indicate isomorphic covering graphs of subalgebra lattices. This gives us a lower bound of the number of categorically equivalent classes of clones on a given finite set.
| [1] | S. Abramsky, D. M. Gabbay, T. S. E. Maibaum, Handbook of Logic in Computer Science, Oxford: Oxford University Press, 1995. |
| [2] | G. Birkhoff, Lattice Theory, 3 Eds., Providence: American Mathematical Society, 1967. |
| [3] | S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, New York: Springer-Verlag, 1981. |
| [4] | B. A. Davey, H. Werner, Dualities for equational classes of algebras, In: Contributions to Lattice Theory (Szeged, 1980), Amsterdam: North-Holland, 1983,101–275. |
| [5] |
K. Denecke, O. Lüders, Category equivalences of clones, Algebra Uni., 34 (1995), 608–618. https://doi.org/10.1007/BF01181879 doi: 10.1007/BF01181879
|
| [6] | K. Denecke, S. L. Wismath, Universal Algebra and Applications in Theoretical Computer Science, Boca Raton: Chapman and Hall/CRC, 2002. https://doi.org/10.1201/9781315273686 |
| [7] |
D. Duffus, I. Rival, Path length in the covering graph of a lattice, Dis. Math., 19 (1977), 139–158. https://doi.org/10.1016/0012-365X(77)90136-1 doi: 10.1016/0012-365X(77)90136-1
|
| [8] | G. Grätzer, General Lattice Theory, 2 Eds., Basel: Birkhäuser, 2003. |
| [9] |
S. Kerkhoff, R. Pöschel, F. Schneider, A short introduction to clones, Elect. Notes Theoret. Comput. Sci., 303 (2014), 107–120. https://doi.org/10.1016/j.entcs.2014.02.006 doi: 10.1016/j.entcs.2014.02.006
|
| [10] | D. Lau, Function Algebras on Finite Sets, Berlin: Springer, 2006. |
| [11] |
P. Noppakaew, W. Supaporn, Categorical equivalence of clones of operations preserving a nontrivial n-equivalence, Asian-European J. Math., 12 (2019), 2050052. https://doi.org/10.1142/S179355711950052X doi: 10.1142/S179355711950052X
|
| [12] |
P. Noppakaew, W. Supaporn, Subalgebra lattices of totally reflexive sub-preprimal algebras, European J. Math., 5 (2019), 411–423. https://doi.org/10.1007/s40879-018-0279-0 doi: 10.1007/s40879-018-0279-0
|
| [13] | E. L. Post, The Two-Valued Iterative Systems of Mathematical Logic, Princeton: Princeton University Press, 1941. |
| [14] | I. G. Rosenberg, Über die funktionale Vollständigkeit in den mehrwertigen Logiken. Struktur der Funktionen von mehreren Variablen auf endlichen Mengen, Rozpravy Československé Akademie Věd, Řada Matematických a Přírodních Věd, 80 (1970), 3–93. |
| [15] | W. Supaporn, Categorical equivalence of clones, PhD thesis, Universität Potsdam, 2014. |
| [16] |
F. Yang, Z. Deng, J. Tao, L. Li, A new method for identifying the isomorphism of topological graphs based on incident matrices, Mech. Mach. Theory, 49 (2012), 298–307. https://doi.org/10.1016/j.mechmachtheory.2011.09.008 doi: 10.1016/j.mechmachtheory.2011.09.008
|