In this paper, we applied the sine-Gordon expansion method (SGEM) and the rational sine-Gordon expansion method (RSGEM) for obtaining some new analytical solutions of the (2+1)-dimensional generalized Korteweg-de Vries (gKdV) and modified Korteweg-de Vries (mKdV) equations with a beta operator. The sine-Gordon expansion method (SGEM) has recently been extended to a rational form, referred to as the rational sine-Gordon expansion method (RSGEM). By applying a specific transformation, the equations are reduced to a nonlinear ordinary differential equation (NODE), allowing for the derivation of analytical solutions in various forms, including complex, hyperbolic, rational, and exponential. All these solutions are expressed through periodic functions using SGEM and RSGEM. The physical significance of the parametric dependencies of these solutions is also examined. Additionally, several simulations, including three-diemensional (3D) visualizations and revolutionary wave behaviors, are presented, based on different parameter selections. Revolutionary surfaces, defined by height and radius as independent variables, are extracted to further illustrate the wave dynamics.
Citation: Yaya Wang, Md Nurul Raihen, Esin Ilhan, Haci Mehmet Baskonus. On the new sine-Gordon solitons of the generalized Korteweg-de Vries and modified Korteweg-de Vries models via beta operator[J]. AIMS Mathematics, 2025, 10(3): 5456-5479. doi: 10.3934/math.2025252
In this paper, we applied the sine-Gordon expansion method (SGEM) and the rational sine-Gordon expansion method (RSGEM) for obtaining some new analytical solutions of the (2+1)-dimensional generalized Korteweg-de Vries (gKdV) and modified Korteweg-de Vries (mKdV) equations with a beta operator. The sine-Gordon expansion method (SGEM) has recently been extended to a rational form, referred to as the rational sine-Gordon expansion method (RSGEM). By applying a specific transformation, the equations are reduced to a nonlinear ordinary differential equation (NODE), allowing for the derivation of analytical solutions in various forms, including complex, hyperbolic, rational, and exponential. All these solutions are expressed through periodic functions using SGEM and RSGEM. The physical significance of the parametric dependencies of these solutions is also examined. Additionally, several simulations, including three-diemensional (3D) visualizations and revolutionary wave behaviors, are presented, based on different parameter selections. Revolutionary surfaces, defined by height and radius as independent variables, are extracted to further illustrate the wave dynamics.
[1] | T. Roubí$\breve {\rm{a}}$ek, Nonlinear partial differential equations with applications, Springer Science & Business Media, 153 (2013). https://doi.org/10.1007/978-3-0348-0513-1 |
[2] | A. W. Leung, Systems of nonlinear partial differential equations: Applications to biology and engineering, Springer Science & Business Media, 49 (2013). https://doi.org/10.1007/978-94-015-3937-1 |
[3] | A. Cheviakov, P. Zhao, Analytical properties of nonlinear partial differential equations: With applications to shallow water models, Springer Nature, 10 (2024). https://doi.org/10.1007/978-3-031-53074-6 |
[4] |
F. Z. Wang, M. M. A. Khater, Computational simulation and nonlinear vibration motions of isolated waves localized in small part of space, J. Ocean Eng. Sci., 2022. https://doi.org/10.1016/j.joes.2022.03.009 doi: 10.1016/j.joes.2022.03.009
![]() |
[5] |
B. C. Li, F. Z. Wang, S. Nadeem, Explicit and exact travelling wave solutions for Hirota equation and computerized mechanization, Plos One, 5 (2024), e0303982. https://doi.org/10.1371/journal.pone.0303982 doi: 10.1371/journal.pone.0303982
![]() |
[6] | D. J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39 (1895), 422–443. https://doi.org/10.1080/14786449508620739 |
[7] |
Y. R. Xia, W. J. Huang, R. X. Yao, Y. Li, Nonlinear superposition and trajectory equations of lump soliton with other nonlinear localized waves for (2+1)-dimensional nonlinear wave equation, Nonlinear Dyn., 2024, 1–19. https://doi.org/10.1007/s11071-024-10685-w doi: 10.1007/s11071-024-10685-w
![]() |
[8] |
Y. R. Xia, R. X. Yao, X. P. Xin, Y. Li, Trajectory equation of a lump before and after collision with other waves for (2+1)-dimensional Sawada-Kotera equation, Appl. Math. Lett., 135 (2023), 108408. https://doi.org/10.1016/j.aml.2022.108408 doi: 10.1016/j.aml.2022.108408
![]() |
[9] |
S. Sivasundaram, A. Kumar, R. K. Singh, On the complex properties to the first equation of the Kadomtsev-Petviashvili hierarchy, Int. J. Math. Comput. Eng., 2 (2024), 71–84. https://doi.org/10.2478/ijmce-2024-0006 doi: 10.2478/ijmce-2024-0006
![]() |
[10] |
M. Bendahmane, Y. Ouakrim, Y. Ouzrour, M. Zagour, Mathematical study of a new coupled electro-thermo radiofrequency model of cardiac tissue, Commun. Nonlinear Sci. Numer. Simulat., 139 (2024), 108281. https://doi.org/10.1016/j.cnsns.2024.108281 doi: 10.1016/j.cnsns.2024.108281
![]() |
[11] |
Y. H. Zheng, Optimization of computer programming based on mathematical models of artificial intelligence algorithms, Comput. Electr. Eng., 110 (2023), 108834. https://doi.org/10.1016/j.compeleceng.2023.108834 doi: 10.1016/j.compeleceng.2023.108834
![]() |
[12] |
Z. Sabir, M. Umar, Levenberg-Marquardt backpropagation neural network procedures for the consumption of hard water-based kidney function, Int. J. Math. Comput. Eng., 1 (2023), 127–138. https://doi.org/10.2478/ijmce-2023-0010 doi: 10.2478/ijmce-2023-0010
![]() |
[13] |
R. Kumar, S. Dhua, Dynamic analysis of Hashimoto's Thyroiditis bio-mathematical model using artificial neural network, Math. Comput. Simulat., 229 (2025), 235–245. https://doi.org/10.1016/j.matcom.2024.10.001 doi: 10.1016/j.matcom.2024.10.001
![]() |
[14] |
W. G. Hao, X. Y. Wang, J. J. Ma, P. Gong, L. Wang, Operation prediction of open sun drying based on mathematical-physical model, drying kinetics and machine learning, Innov. Food Sci. Emerg. Tech., 97 (2024), 103836. https://doi.org/10.1016/j.ifset.2024.103836 doi: 10.1016/j.ifset.2024.103836
![]() |
[15] |
J. L. G. Guirao, On the stochastic observation for the nonlinear system of the emigration and migration effects via artificial neural networks, Int. J. Math. Comput. Eng., 1 (2023), 177–186. https://doi.org/10.2478/ijmce-2023-0014 doi: 10.2478/ijmce-2023-0014
![]() |
[16] |
R. Zarin, N. Ullah, A. Khan, U. W. Humphries, A numerical study of a new non-linear fractal fractional mathematical model of malicious codes propagation in wireless sensor networks, Comput. Secur., 135 (2023), 103484. https://doi.org/10.1016/j.cose.2023.103484 doi: 10.1016/j.cose.2023.103484
![]() |
[17] |
M. A. Basit, M. Imran, W. W. Mohammed, M. R. Ali, A. S. Hendy, Thermal Analysis of Mathematical Model of Heat and Mass Transfer through Bioconvective Carreau Nanofluid Flow over an Inclined Stretchable Cylinder, Case Stud. Therm. Eng., 63 (2024), 105303. https://doi.org/10.1016/j.csite.2024.105303 doi: 10.1016/j.csite.2024.105303
![]() |
[18] |
R. Pandey, G. R. Jayanth, M. S. M. Kumar, Comprehensive mathematical model for efficient and robust control of irrigation canals, Environ. Modell. Softw., 178 (2024), 106083. https://doi.org/10.1016/j.envsoft.2024.106083 doi: 10.1016/j.envsoft.2024.106083
![]() |
[19] | J. E. A. McIntosh, R. P. McIntosh, Mathematical modelling and computers in endocrinology, Monographs on Endocrinology, 16 (1980), 1–337. https://doi.org/10.1007/978-3-642-81401-3 |
[20] |
L. J. Yang, Q. K. Song, Y. R. Liu, Dynamics analysis of a new fractional-order SVEIR-KS model for computer virus propagation: Stability and Hopf bifurcation, Neurocomputing, 598 (2024), 128075. https://doi.org/10.1016/j.neucom.2024.128075 doi: 10.1016/j.neucom.2024.128075
![]() |
[21] |
A. H. Seddik, M. Salah, G. Behery, A. E. harby, A. I. Ebada, S. Teng, et al., A new generative mathematical model for coverless steganography system based on image generation, Comput. Mater. Con., 74 (2023), 5087–5103. https://doi.org/10.32604/cmc.2023.035364 doi: 10.32604/cmc.2023.035364
![]() |
[22] |
M. Pompa, A. D. Gaetano, A. Borri, A. Farsetti, S. Nanni, A. Pontecorvi, et al., A physiological mathematical model of the human thyroid, J. Comput. Sci., 76 (2024), 102236. https://doi.org/10.1016/j.jocs.2024.102236 doi: 10.1016/j.jocs.2024.102236
![]() |
[23] |
Z. Szymańska, M. Lachowicz, N. Sfakianakis, M. A. J. Chaplain, Mathematical modelling of cancer invasion: Phenotypic transitioning provides insight into multifocal foci formation, J. Comput. Sci., 75 (2024), 102175. https://doi.org/10.1016/j.jocs.2023.102175 doi: 10.1016/j.jocs.2023.102175
![]() |
[24] |
G. D. Lu, A. P. S. Selvadurai, M. A. Meguid, Analytical solution to non-isothermal pore-pressure evolution in hydrating minefill, Can. Geotech. J., 61 (2024), 2722–2734. https://doi.org/10.1139/cgj-2023-0464 doi: 10.1139/cgj-2023-0464
![]() |
[25] |
H. J. Jiang, Q. Z. Guo, X. G. Wang, N. H. Gao, Analytical solution of three-dimensional temperature field for skin tissue considering blood perfusion rates under laser irradiation and thermal damage analysis, Optik, 312 (2024), 171982. https://doi.org/10.1016/j.ijleo.2024.171982 doi: 10.1016/j.ijleo.2024.171982
![]() |
[26] |
N. H. Sweilam, S. M. A. Mekhlafi, W. S. A. Kareem, G. Alqurishi, A new crossover dynamics mathematical model of monkeypox disease based on fractional differential equations and the $\Psi$ Caputo derivative: Numerical treatments, Alex. Eng. J., 111 (2025), 181–193. https://doi.org/10.1016/j.aej.2024.10.019 doi: 10.1016/j.aej.2024.10.019
![]() |
[27] |
U. Shirole, M. Joshi, Prediction of left ventricle ejection fraction from HRV in diabetics and cardiac diseased subjects: A mathematical model approach, Med. Novel Tech. Dev., 23 (2024), 100317. https://doi.org/10.1016/j.medntd.2024.100317 doi: 10.1016/j.medntd.2024.100317
![]() |
[28] |
X. Y. Gao, In plasma physics and fluid dynamics: Symbolic computation on a (2+1)-dimensional variable-coefficient Sawada-Kotera system, Appl. Mathh. Lett., 159 (2025), 109262. https://doi.org/10.1016/j.aml.2024.109262 doi: 10.1016/j.aml.2024.109262
![]() |
[29] |
X. T. Gao, B. Tian., Similarity reductions on a (2+1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili system describing certain electromagnetic waves in a thin film, Int. J. Theor. Phys., 63 (2024), 99. https://doi.org/10.1007/s10773-024-05629-4 doi: 10.1007/s10773-024-05629-4
![]() |
[30] |
B. Kemaloğlu, G. Yel, H. Bulut, An application of the rational sine-Gordon method to the Hirota equation, Opt. Quant. Elecron., 55 (2023), 658. https://doi.org/10.1007/s11082-023-04930-6 doi: 10.1007/s11082-023-04930-6
![]() |
[31] |
A. A. Mahmud, Considerable traveling wave solutions of the generalized hietarinta-type equation, Int. J. Math. Comput. Eng., 3 (2025), 185–200. https://doi.org/10.2478/ijmce-2025-0015 doi: 10.2478/ijmce-2025-0015
![]() |
[32] |
S. M. Ege, E. Misirli, A new method for solving nonlinear fractional differential equations, New Trend. Math. Sci., 5 (2017), 225–233. http://dx.doi.org/10.20852/ntmsci.2017.141 doi: 10.20852/ntmsci.2017.141
![]() |
[33] |
G. W. Wang, A. H. Kara, A (2+1)-dimensional KdV equation and mKdV equation: Symmetries, group invariant solutions and conservation laws, Phys. Lett. A, 383 (2019), 728–731. https://doi.org/10.1016/j.physleta.2018.11.040 doi: 10.1016/j.physleta.2018.11.040
![]() |
[34] | A. M. Wazwaz, New Painlevé-integrable (2+1)-and (3+1)-dimensional KdV and mKdV equations, Romanian J. Phys., 65 (2020), 108. |
[35] |
S. Kumar, S. Malik, Soliton solutions of (2+1) and (3+1)-dimensional KdV and mKdV equations, AIP Conf. Proc., 2435 (2022), 020027. https://doi.org/10.1063/5.0083653 doi: 10.1063/5.0083653
![]() |
[36] |
R. R. Yuan, Y. Shi, S. L. Zhao, J. X. Zhao, The combined KdV-mKdV equation: Bilinear approach and rational solutions with free multi-parameters, Result Phys., 55 (2023), 107188. https://doi.org/10.1016/j.rinp.2023.107188 doi: 10.1016/j.rinp.2023.107188
![]() |
[37] |
N. H. Ali, S. A. Mohammed, J. Manafian, Study on the simplified MCH equation and the combined KdV-mKdV equations with solitary wave solutions, Par. Diff. Eq. App. Math., 9 (2024), 100599. https://doi.org/10.1016/j.padiff.2023.100599 doi: 10.1016/j.padiff.2023.100599
![]() |
[38] |
A. A. Boroujeni, R. Pourgholi, S. H. Tabasi, Numerical solutions of KDV and mKDV equations: Using sequence and multi-core parallelization implementation, J. Comput. Appl. Math., 454 (2025), 116184. https://doi.org/10.1016/j.cam.2024.116184 doi: 10.1016/j.cam.2024.116184
![]() |
[39] |
A. A. Elmandouha, A. G. Ibrahim, Bifurcation and travelling wave solutions for a (2+1)-dimensional KdV equation, J. Taibah Univ. Sci., 14 (2020), 139–147. https://doi.org/10.1080/16583655.2019.1709271 doi: 10.1080/16583655.2019.1709271
![]() |
[40] |
A. K. Gupta, S. S. Ray, On the solution of time-fractional KdV-Burgers equation using Petrov-Galerkin method for propagation of long wave in shallow water, Chaos Solition. Fract., 116 (2018), 376–380. https://doi.org/10.1016/j.chaos.2018.09.046 doi: 10.1016/j.chaos.2018.09.046
![]() |
[41] |
G. W. Wang, A. M. Wazwaz, A new (3+1)-dimensional KdV equation and mKdV equation with their corresponding fractional forms, Fractals, 30 (2022), 2250081. https://doi.org/10.1142/S0218348X22500815 doi: 10.1142/S0218348X22500815
![]() |
[42] |
Y. Zhang, R. S. Ye, W. X. Ma, Binary Darboux transformation and soliton solutions for the coupled complex modified Korteweg‐de Vries equations, Math. Method Appl. Sci., 43 (2020), 613–627. https://doi.org/10.1002/mma.5914 doi: 10.1002/mma.5914
![]() |
[43] |
N. A. Kudryashov, D. V. Safonova, Nonautonomous first integrals and general solutions of the KdV‐Burgers and mKdV‐Burgers equations with the source, Math. Method Appl. Sci., 42 (2019), 4627–4636. https://doi.org/10.1002/mma.5684 doi: 10.1002/mma.5684
![]() |
[44] | A. Salas, S. Kumar, A. Yildirim, A. Biswas, Cnoidal waves, solitary waves and painleve analysis of the 5th order KdV equation with dual-power law nonlinearity, Proceed. Romanian Aca., Series A, 14 (2013), 28–34. |
[45] |
X. Y. Gao, In an ocean or a river: Bilinear auto-Bäcklund transformations and similarity reductions on an extended time-dependent (3+1)-dimensional shallow water wave equation, China Ocean Eng., 2025. https://doi.org/10.1007/s13344-025-0012-y doi: 10.1007/s13344-025-0012-y
![]() |
[46] |
X. Y. Gao, Hetro-Bäcklund transformation, bilinear forms and multi-solitons for a (2+1)-dimensional generalized modified dispersive water-wave system for the shallow water, Chinese. J. Phys., 92 (2024), 1233–1239. https://doi.org/10.1016/j.cjph.2024.10.004 doi: 10.1016/j.cjph.2024.10.004
![]() |
[47] |
A. Atangana, D. Baleanu, A. Alsaedi, Analysis of time-fractional Hunter-Saxton equation: A model of neumatic liquid crystal, Open Phys., 14 (2016), 145–149. https://doi.org/10.1515/phys-2016-0010 doi: 10.1515/phys-2016-0010
![]() |
[48] |
H. Y. Martínez, J. F. G. Aguilar, D. Baleanu, Beta-derivative and sub-equation method applied to the optical solitons in medium with parabolic law nonlinearity and higher order dispersion, Optik, 155 (2018), 357–365. https://doi.org/10.1016/j.ijleo.2017.10.104 doi: 10.1016/j.ijleo.2017.10.104
![]() |
[49] |
K. Hosseini, M. Mirzazadeh, J. F. Gómez-Aguilar, Soliton solutions of the Sasa-Satsuma equation in the monomode optical fibers including the beta-derivatives, Optik, 224 (2020), 165425. https://doi.org/10.1016/j.ijleo.2020.165425 doi: 10.1016/j.ijleo.2020.165425
![]() |
[50] |
K. Hosseini, L. Kaur, M. Mirzazadeh, H. M. Baskonus, 1-soliton solutions of the (2+1)-dimensional Heisenberg ferromagnetic spin chain model with the beta time derivative, Opt. Quant. Electron., 53 (2021), 125. https://doi.org/10.1007/s11082-021-02739-9 doi: 10.1007/s11082-021-02739-9
![]() |
[51] |
H. M. Baskonus, M. N. Raihen, M. Kayalar, On the extraction of complex behavior of generalized higher-order nonlinear Boussinesq dynamical wave equation and (1+1)-dimensional Van der Waals gas system, AIMS Math., 9 (2024), 28379–28399. https://doi.org/10.3934/math.20241377 doi: 10.3934/math.20241377
![]() |
[52] |
C. T. Yan, A simple transformation for nonlinear waves, Phys. Lett. A, 224 (1996), 77–84. https://doi.org/10.1016/S0375-9601(96)00770-0 doi: 10.1016/S0375-9601(96)00770-0
![]() |
[53] |
H. M. Baskonus, New acoustic wave behaviors to the Davey-Stewartson equation with power-law nonlinearity arising in fluid dynamics, Nonlinear Dyn., 86 (2016), 177–183. https://doi.org/10.1007/s11071-016-2880-4 doi: 10.1007/s11071-016-2880-4
![]() |