
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(3): 5456–5479.
DOI: 10.3934/math.2025252
Received: 12 December 2024
Revised: 15 February 2025
Accepted: 21 February 2025
Published: 11 March 2025

Research article

On the new sine-Gordon solitons of the generalized Korteweg-de Vries and
modified Korteweg-de Vries models via beta operator

Yaya Wang1, Md Nurul Raihen2,4,*, Esin Ilhan3 and Haci Mehmet Baskonus4

1 Department of Information Engineering, Binzhou Polytechnic, Binzhou, 256600, China
2 Department of Mathematics and Statistics, University of Toledo, OH, 43606, USA
3 Faculty of Engineering and Architecture, Kirsehir Ahi Evran University, Kirsehir, Turkey
4 Department of Mathematics and Science Education, Harran University, Sanliurfa, Turkey

* Correspondence: Email: nurul.raihen@gmail.com; Tel: +1-313-378-7353.

Abstract: In this paper, we applied the sine-Gordon expansion method (SGEM) and the rational
sine-Gordon expansion method (RSGEM) for obtaining some new analytical solutions of the (2+1)-
dimensional generalized Korteweg-de Vries (gKdV) and modified Korteweg-de Vries (mKdV)
equations with a beta operator. The sine-Gordon expansion method (SGEM) has recently been
extended to a rational form, referred to as the rational sine-Gordon expansion method (RSGEM).
By applying a specific transformation, the equations are reduced to a nonlinear ordinary differential
equation (NODE), allowing for the derivation of analytical solutions in various forms, including
complex, hyperbolic, rational, and exponential. All these solutions are expressed through periodic
functions using SGEM and RSGEM. The physical significance of the parametric dependencies of
these solutions is also examined. Additionally, several simulations, including three-diemensional (3D)
visualizations and revolutionary wave behaviors, are presented, based on different parameter selections.
Revolutionary surfaces, defined by height and radius as independent variables, are extracted to further
illustrate the wave dynamics.
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1. Introduction

Nonlinear partial differential equations (NLPDEs) have been used for people to understand the
complex real-world phenomena, as they account for nonlinearity, time, and interactions among
multiple independent variables [1]. These equations have often incorporated some parameters, whose
values are determined by the specific conditions, making them highly versatile in capturing the
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behavior of certain systems [1]. Therefore, as scientific researches and mathematical modeling
continue to advance, an increasing number of NLPDEs with both constant and variable coefficients
are being introduced, allowing for more accurate and detailed descriptions of intricate physical
processes [2]. Over the last several decades, there has been a significant rise in the modeling of
various aspects of nonlinear equations [3–5]. Among these, the KdV equation is one of the most
renowned, which was first derived in 1895 by Dutch mathematicians Diederik Korteweg and Gustav de
Vries [6]. They introduced this equation to model the propagation of long, shallow-water waves with
small amplitudes. The equation was originally developed to explain the appearance and persistence
of solitary waves, or solitons, which were observed in shallow canals. Especially, in recent years,
numerous problems have been represented using mathematical models [7–9]. Various operators and
mathematical frameworks have been employed to analyze and explore such problems. Within this
context, Bendahmane and his team introduced a new coupled electro-thermo radiofrequency model
for cardiac tissue [10]. More recently, mathematical models have been utilized to develop artificial
intelligence algorithms for optimizing computer programming [11]. Using artificial neural networks,
experts have studied various real-world problems, including the effects of hard water consumption on
kidney function and diseases [12], analyzing Hashimoto’s thyroiditis [13], predicting the operation
of open-sun drying [14], and modeling the nonlinear dynamics of emigration and migration [15]. A
new nonlinear fractal fractional mathematical model has been introduced to analyze the spread of
malicious codes in wireless sensor networks. This model addresses computer virus-related issues
by leveraging the benefits of both fractal and fractional operators [16]. Basit et al. explored a new
thermal analysis for heat and mass transfer in bioconvective Carreau nanofluid flowing over an inclined
stretchable cylinder [17]. Pandey developed a comprehensive analysis for the efficient and robust
control of irrigation canals. That study presents a hydraulic model for irrigation canals, integrating
water levels and gate dynamics to improve discharge predictions [18]. Begley conducted studies to
explore the deeper properties of endocrine diseases using mathematical modeling and computational
methods [19]. Yang et al. investigated the behavior of computer viruses in signal bases, reporting on the
application of the Routh-Hurwitz criteria and the Hopf bifurcation theorem in their model [20]. Seddik
et al. introduced a new generative mathematical model utilizing binary pixel images to investigate
the encryption process in image generation [21]. More recently, a physiological mathematical model
was developed to study the human thyroid [22]. Among the most significant epidemiological models
is cancer, and a new mathematical model addressing cancer invasion has been explored [23]. In
recent decades, these models have been extensively investigated to extract traveling wave solutions.
Within this context, analytical solutions were used to study the evolution of non-isothermal pore-
pressure in hydrating mine fill [24]. In epidemiological models, 3D temperature fields for skin
tissue were analyzed through the application of analytical solutions [25]. Sweilam investigated a
novel crossover dynamics model for monkeypox disease using fractional differential equations and
the Caputo derivative [26]. Shirole et al. presented a method for predicting the left ventricle ejection
fraction from heart rate variability (HRV) in patients with diabetes and cardiac disease [27].

Through these models and studies, mathematical models have been extensively utilized to explore
the underlying properties of real-world problems [28–31]. Therefore, examining analytic solutions of
these models plays a crucial role in analyzing physical problems, as it helps evaluate the accuracy of
approximations, numerical methods, and computational programs. Consequently, developing efficient
and effective methods for obtaining analytic solutions is crucial to enhancing the utility of such
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computations. These computational techniques have become essential across a range of scientific
disciplines, including financial mathematics, aerospace, quantum physics, and environmental studies.
As a result, the advancement of new computational techniques for solving NLPDEs models and their
applications is essential for scientific and technological progress.

In this regards, we will study the gKdV and mKdV equations using the beta derivative operator as
follows [32]:

Dβ
t u(x, y, t) = auux − auuy + buxxx − buyyy − cuxxy + cuxyy, (1.1)

Dβ
t u(x, y, t) = au2ux − au2uy + buxxx − buyyy − cuxxy + cuxyy, (1.2)

where a, b, and c are real constants; 0 < β ≤ 1; and u(x, y, t) is the dependent variable that represents
the wave profile. Equations (1.1) and (1.2) were studied by Wang and Kara [33], who applied
Lie group theory to analyze them, deriving several invariant solutions. Subsequently, Wazwaz [34]
demonstrated the integrability of these equations using the Painlevé test and obtained soliton solutions.
Kumar and Malik [35] employed the Kudryashov technique to generate bright and singular soliton
solutions for the same equations. Yuan [36] investigated the combined KdV-mKdV equation using
a bilinear approach and developed rational solutions incorporating free multi-parameters. Ali [37]
conducted an analysis of these equations to generate solitary wave solutions. Ahmad [38] developed
an explicit difference method to derive waveform soliton solutions for the KdV and mKdV equations.
Additionally, Elmandouha and Ibrahim [39] used the dynamic system approach to explore bifurcations
and derive analytic traveling wave solutions for the KdV equation (1.1).

The KdV equation has been widely utilized to model various phenomena in physics and
engineering. It is particularly useful in the study of magnetoacoustic wave propagation, small-
amplitude shallow-water waves, fluid and plasma turbulence, and shock wave dynamics. Additionally,
the KdV equation is used to solve complex mathematical problems, such as the determination of gravity
waves’ speed, and in many physical phenomena including electrohydrodynamic flows, acoustic waves
in nonuniform atmospheric conditions, and the transmission of optical solitons in fiber optics, among
many others [40,41]. Due to its robustness in modeling nonlinear wave phenomena, the KdV equation
has become an essential tool for researchers working in various scientific fields. Throughout the years,
the KdV equation has been a fundamental tool in mathematical analyses and modeling for physics
and engineering, showcasing the remarkable ability of mathematics to predict and unravel complex
physical behaviors. Its continued relevance underscores the importance of mathematical frameworks
in advancing our understanding of intricate real-world phenomena. At the same time, various KdV
extensions are being developed [42–44]. The wide range of KdV applications and numerous KdV
extensions have become invaluable tools for many professionals [45, 46]. Ongoing researches and
developments ensure that those extensions/generalizations will continue to play a vital role in scientific
progress [45, 46].

In the following, we propose some analytical solutions of Eqs (1.1) and (1.2) based on the
SGEM and RSGEM. The RSGEM method is newly developed and, to the best of our knowledge,
it has not yet been applied to the nonlinear (2+1)-dimensional gKdV and mKdV equations in any
published work. This paper introduces and demonstrates the use of RSGEM, extending the SGEM by
incorporating rational trigonometric functions. While the SGEM employs straightforward expansions
using trigonometric and hyperbolic functions to derive solutions, the RSGEM incorporates rational
trigonometric and hyperbolic forms, allowing for a richer set of solutions, including mixed modes
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and more intricate waveforms. This structural enhancement makes the RSGEM capable of addressing
more complex wave dynamics and uncovering solutions with singularities or complex patterns, which
are not accessible through the SGEM. Additionally, the RSGEM leads to more intricate algebraic
systems that require greater computational effort but provide diverse solution types, such as mixed
hyperbolic, trigonometric, and exponential forms. Using these approaches, we successfully construct
analytic solutions in various forms, including complex functions, hyperbolic functions, trigonometric
functions, and exponential functions.

The structure of this paper is as follows: Section 2 provides preliminary remarks on the beta
operator. Section 3 outlines the foundational steps of the SGEM and RSGEM. Section 4 focuses
on the applications of these methods to derive new analytical traveling wave solutions for the gKdV
and mKdV equations. In Section 5, we discuss the physical comments of the obtained results. Finally,
Section 6 concludes the paper by highlighting the key contributions and novelties of this work.

2. Preliminaries

This section presents the fundamental definitions related to the beta derivative operator. Let f (x) be
a function of all non-negative values of x with the beta derivative, which is defined as follows [47,48]:

Dβ
x( f (x)) =

dβ f (x)
dxβ

= lim
δ→0

f
(
x + δ(x + 1

Γ(β) )
1−β

)
− f (x)

δ
, 0 < β ≤ 1, (2.1)

where Γ(β) is the gamma function, defined as

Γ(x) =

∫ ∞

0
e−ttx−1 dx. (2.2)

Some useful properties are provided as follows [49, 50]:

Dβ
x( f (x)) =

(
x +

1
Γ(β)

)1−βd f (x)
dx

. (2.3)

Dβ
x( f og(x)) =

(
x +

1
Γ(β)

)1−β

g′(x) f ′(g(x)). (2.4)

3. Methodological framework

In this section, the general properties of the SGEM and RSGEM are discussed. Let us consider the
sine-Gordon equation, [51–53], which is given as

vxx − vtt = m2 sin(v), (3.1)

where v = v(x, t) and m ∈ R \ {0}.
Performing the wave transformation v = V(η), η = µ(x − ct) upon Eq (3.1), yields the following

nonlinear ordinary differential equation (NODE):

V ′′ =
m2

µ2(1 − c2)
sin(V), (3.2)
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in which V = V(η), η is the amplitude, and c is the speed of the traveling wave. Integrating Eq (3.2),
we get the following equation: [(V

2

)′]2

=
m2

µ2(1 − c2)
sin2

(V
2

)
+ K, (3.3)

where K is the constant of integration. Putting K = 0, ω(η) = V
2 , and a2 = m2

µ2(1−c2) in Eq (3.3), gives:

ω′ = a sin(ω). (3.4)

Substituting a = 1 in Eq (3.4), we get,
ω′ = sin(ω). (3.5)

After simplifying Eq (3.5), we have the following two equations:

sin(ω) = sin(w(ξ)) =
2peξ

1 + p2e2ξ

∣∣∣∣∣∣
p=1

= sech(ξ), (3.6)

cos(ω) = cos(w(ξ)) =
p2e2ξ − 1
p2e2ξ + 1

∣∣∣∣∣∣
p=1

= tanh(ξ), (3.7)

where p is the constant of integration.

3.1. The sine-Gordon method

Let us consider a general nonlinear partial differential equation as follows:

P(u,Dβ
t u, uxt, u2, · · · ) = 0. (3.8)

Using the wave transformation u = u(x, t) = U(ξ), ξ = x − λ
β

(
t + 1

Γ(β)

)β
, we obtain a nonlinear ordinary

differential equation
N(U,U′,U′′,U2, · · · ) = 0, (3.9)

where U = U(ξ), U′ = dU
dξ , U′′ = d2U

dξ2 , · · · . In this model, we consider the trial solution formula
as follows:

U(ξ) =

n∑
i=1

tanhi−1(η)[Bi sech(η) + Ai tanh(η)] + A0. (3.10)

Taking Eqs (3.6) and (3.7) into (3.10), we may rewrite it as follows:

U(ω) =

n∑
i=1

cosi−1(ω)[Bi sin(ω) + Ai cos(ω)] + A0. (3.11)

We determine the value of n is using the balance principle according to the terms of the NODE
(obtained from Eq (3.8)). When we put Eq (3.11) and its necessary derivation in Eq (3.9), we derive
a set of algebraic equations by summing the coefficients of sini(ω) cos j(ω) with the same power and
setting each sum to zero. We use symbolic computation to simplify the set of algebraic equations,
allowing us to determine the values of the coefficients Ai, Bi, µ, and c. Finally, by substituting the
values of Ai, Bi, µ, and c into Eq (3.10), we obtain new traveling wave solutions to Eq (3.8).
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3.2. The rational sine-Gordon method

Let us consider a general nonlinear partial differential model given as follows [30]:

P(Ξ,Dβ
t Ξ,Ξxt,Ξ

2, · · · ) = 0. (3.12)

Via Ξ = Ξ(x, t) = U(ξ), ξ = x − λ
β

(
t + 1

Γ(β)

)β
, we obtain the nonlinear ordinary differential equation

N(U,U′,U′′,U2, · · · ) = 0, (3.13)

where U = U(ξ), U′ = dU
dξ ,U

′′ = d2U
dξ2 , · · · . In this model, we assume the trial solution function to be

the following

U(ξ) =

∑N
i=1 tanhi−1(ξ)[Aisech(ξ) + citanh(ξ)] + A0∑M
i=1 tanhi−1(ξ)[Bisech(ξ) + ditanh(ξ)] + B0

. (3.14)

The resulting solution will be obtained by computing the rational coefficients, and the corresponding
method is known as the RSGEM. With the help of Eqs (3.6) and (3.7), Eq (3.14) may be rewritten as

U(ω) =

∑N
i=1 cosi−1(ω)[Ai sin(ω) + ci cos(ω)] + A0∑M
i=1 cosi−1(ω)[Bi sin(ω) + di cos(ω)] + B0

. (3.15)

The balances M and N are obtained. When we substitute Eq (3.14) and its necessary derivation in
Eq (3.13), we obtain an algebraic equation. By solving this equation, we find the values of the
parameters given by Eq (3.15). If we put these values into Eq (3.14), we find some new analytical
solutions of Eq (3.12).

4. Applications

In this part of the paper, we apply the SGEM and RSGEM to obtain new analytical solutions for the
(2+1)-dimensional gKdV and mKdV systems, as detailed below.

4.1. SGEM solution of the (2+1)-dimensional generalized KdV equation

In this subsection, multiple analytical solutions to the gKdV equation (1.1) are extracted using
SGEM. For simplicity, the following transformation of the dependent variables is considered:

u(x, y, t) = U(ξ), (4.1)

where

ξ = x + ky +
w
β

(
t +

1
Γ(β)

)β
, 0 < β ≤ 1, (4.2)

which results in
2(bk3 − ck2 + ck − b)U′′ + a(k − 1)U2 + 2wU = 0, (4.3)

where U = U(ξ), k and w are real nonzero constants. In Eq (4.3), by using the balance principle,
we obtain N = 2. So, using Eq (3.11), the test function for the solution formula can be expressed
as follows:

U(ω) = A0 + cos(ω)A1 + cos2(ω)A2 + sin(ω)B1 + cos(ω) sin(ω)B2. (4.4)
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When we substitute Eq (4.4) and its second derivative into Eq (4.3), we derive an algebraic equation
involving trigonometric functions. Thus, by equating the coefficients of similar terms, we obtain a
system of equations for the parameters. Solving this system allows us to determine the values of
parameters such as A0, B1, A1, B2, A2, k, and w. Substituting these values into Eq (3.10), we obtain
the following:
Case 1. The first coefficients are selected as follows:

A0 =
−4ck + 4b(1 + k + k2)

a
, A1 = 0, A2 =

6ck − 6b(1 + k + k2)
a

, B1 = 0,

B2 = −
6i(−ck + b(1 + k + k2))

a
,w = (−1 + k)(−ck + b(1 + k + k2)),

(4.5)

which yields the following mixed complex singular solution to the system of Eq (1.1):

u1(x, y, t) = τ


−1 −

3i

−i + sinh
[
x + ky +

(−1+k)(−ck+b(1+k+K2))

(
t+ 1

Γ(β)

)β
β

]


, (4.6)

where τ =
2(−ck+b(1+k+k2))

a , and 0 < β ≤ 1 for the strain condition for the valid solution of the β derivative
operator. The wave dynamics of the imaginary part of Eq (4.6) are illustrated through revolutionary
graphs in Figure 1 and 3D simulations in Figure 2. These simulations represent a novel contribution to
the existing literature.

Figure 1. The revolutionary wave behavior of Eq (4.6) for the specified values k = 0.1, c =

0.2, b = 0.5, a = 0.3, y = 1, and β = 0.99.
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Figure 2. Three-dimensional wave behavior of Eq (4.6) for the specified values k = 0.1, c =

0.2, b = 0.5, a = 0.3, y = 1, and β = 0.99.

Case 2. We select the following coefficients:

A0 =
2iB2

3
, A1 = 0, A2 = −iB2, B1 = 0, b =

6ck + iaB2

6(1 + k + k2)
,w =

1
6

ia(−1 + k)B2, (4.7)

which gives the following mixed complex rational solution:

u2(x, y, t) =
B2

3


−i +

3

−i + sinh

x + ky +
ia(−1+k)

(
t+ 1

Γ(β)

)β
B2

6β




, (4.8)

with 0 < β ≤ 1 as the strain condition for a valid solution. The wave dynamics of the imaginary part
of Eq (4.8) are depicted as revolutionary graphs in Figure 3.

Figure 3. The revolutionary wave behavior of Eq (4.8) for the specified values a = 0.1, k =

0.2, B2 = 36, y = 1, and β = 0.99.
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Case 3. By taking the coefficients

A0 = −
2A2

3
, A1 = 0, B1 = 0, B2 = −iA2, c =

6b(1 + k + k2) + aA2

6k
,w = −

1
6

a(−1 + k)A2, (4.9)

we obtain the other complex solution to Eq (1.1) as follows:

u3(x, y, t) =
A2

3


1 −

3i

i + sinh

x + ky −
a(−1+k)

(
t+ 1

Γ(β)

)β
A2

6β




, (4.10)

where 0 < β ≤ 1. Figure 4 presents the two-dimensional (2D) simulations of Eq (4.10).

Figure 4. The 2D dynamics of Eq (4.10) for a = 0.1, k = 0.2, A2 = 36, y = 1, and β = 0.99.

Case 4. When the following coefficients are considered:

A0 = −
2A2

3
, A1 = 0, B1 = 0, B2 = −iA2, a =

6(−1)2/3c
A2

, k = (−1)2/3,w = i
√

3c, (4.11)

the other complex solution to Eq (1.1) is obtained as:

u4(x, y, t) =
A2

3


1 −

3i

i + sinh

x + (−1)2/3y +
i
√

3c

(
t+ 1

Γ(β)

)β
β




, (4.12)

where 0 < β ≤ 1. Figure 5 displays the 2D simulations for Eq (4.12).
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Figure 5. The 2D dynamics of Eq (4.12) for a = 0.1, A2 = 12, y = 1, c = 2, and β = 0.99.

4.2. SGEM solution of the (2+1)-dimensional mKdV equation

In this subsection, multiple analytical solutions to the mKdV equation (1.2) are obtained using
SGEM. To enhance the efficiency of the derivation, we apply the following transformation to the
dependent variables:

u(x, y, t) = U(ξ), (4.13)

where

ξ = x + ky +
w
β

(
t +

1
Γ(β)

)β
, 0 < β ≤ 1, (4.14)

yields
3(bk3 − ck2 + ck − b)U′′ + a(k − 1)U3 + 3wU = 0, (4.15)

where U = U(ξ), and k and w are real, non-zero constants. Applying the balance principle to Eq (4.15),
we determine that N = 1. Therefore, using Eq (3.11), the test function for the solution can be written
as follows:

U(ω) = A0 + sin(ω)B1 + cos(ω)A1. (4.16)

When Eq (4.16) and its second derivative are substituted into Eq (4.15), an algebraic equation involving
trigonometric functions is obtained. Equating the coefficients of corresponding terms yields a system of
equations for the parameters. Solving this system provides the values for A0, B1, A1, k, and w. Inserting
these values into Eq (3.10) gives the following result.
Case 1. The coefficients are chosen as follows:

A0 = 0, A1 =
(−1)2/3

√
3
2

√
c

√
a

, B1 =
(−1)1/6

√
3
√

c
√

2
√

a
, k = −(−1)1/3,w = −

1
2

i
√

3c, (4.17)

which results in the following mixed complex solution for the system of Eq (1.2):

u1(x, y, t) =

(−1)1/6
√

3
√

c
(

sech
[
x − (−1)1/3y − i

√
3c

2β

(
t + 1

Γ(β)

)β]
− i tanh

[
x − (−1)1/3y − i

√
3c

2β

(
t + 1

Γ(β)

)β])
√

2
√

a
,

(4.18)

for 0 < β ≤ 1, which defines the strain condition for the fractional derivative operator. The wave
behavior of the imaginary part of Eq (4.18) is visualized through the revolutionary plots in Figure 6.
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Figure 6. The revolutionary wave behavior of Eq (4.18) for the specified values c = 0.2, a =

0.3, y = 1, and β = 0.99.

Case 2. By choosing the following coefficients

A0 = 0, B1 = −iA1, c = b(1 +
1
k

+ k) +
2aA2

1

3k
,w = −

1
3

a(−1 + k)A2
1, (4.19)

we get the mixed complex solution to Eq (1.2) as follows:

u2(x, y, t) = A1

(
− i sech

[
x + ky −

A2
1

3β
a(−1 + k)

(
t +

1
Γ(β)

)β ]
+

tanh
[
x + ky −

A2
1

3β
a(−1 + k)

(
t +

1
Γ(β)

)β ])
,

(4.20)

with 0 < β ≤ 1, as the strain condition for a valid solution. The wave dynamics of the imaginary
part of Eq (4.20) are illustrated through revolutionary plots and 3D visualizations in Figures 7
and 8, respectively.

Figure 7. The revolutionary wave behavior of Eq (4.20) for the specified values k = 2, A1 =

3, c = 0.2, a = 0.23, y = 1, and β = 0.99.
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Figure 8. Three-dimensional wave behavior of Eq (4.20) for the specified values k = 2, A1 =

3, c = 0.2, a = 0.23, y = 1, and β = 0.99.

Case 3. Considering the coefficients

A0 = 0, B1 = iA1, k = 1 −
3w
aA2

1

, c = 3b + 2w −
3bw
aA2

1

+
2aA2

1

3
+

3w(b + 2w)
−3w + aA2

1

, (4.21)

then we arrive at another complex solution for Eq (1.2) as shown below

u3(x, y, t) = A1

(
i sech

[
x + y +

w
(
t + 1

Γ(β)

)β
β

−
3yw
aA2

1

]
+

tanh
[
x + y +

w
(
t + 1

Γ(β)

)β
β

−
3yw
aA2

1

])
,

(4.22)

where 0 < β ≤ 1. The 2D dynamics of the complex solution u3 in Eq (4.22) is visualized in Figure 9,
which illustrates the imaginary and the real components. The imaginary part exhibits a soliton-like
localized peak centered around x ≈ −2, which decays symmetrically on both sides. On the other
hand, the real part shows a smooth kink-like transition across x = 0, representing a wave front or
domain wall.

Figure 9. The 2D dynamics of Eq (4.22) for k = 2, A1 = 3, y = 1, a = 0.3,w = 0.23, and
β = 0.99.
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4.3. RSGEM solution of the (2+1)-dimensional gKdV equation

In Eq (4.3), we select N = M = 1, and then the test function for the solution can be written
as follows:

U(w) =
A0 + A1 sin(w) + c1 cos(w)
B0 + B1 sin(w) + d1 cos(w)

, (4.23)

where A0 , B0, A1 , B1, and c1 , d1 simultaneously, with the condition that neither B1 nor d1 can
be zero at the same time. If A0 = B0, A1 = B1, and c1 = d1, then the solution becomes trivial. By
substituting Eq (4.23) into (4.3), we derive an algebraic equation involving trigonometric functions
of varying orders. By equating the coefficients of terms with the same powers, we obtain a system
of equations. By solving this system using Wolfram Mathematical 14, we obtain the following set
of results.
Set 1. The first set of results is presented as follows:

A1 = −
A0B0

√
B2

0 − d2
1 − 3

√
A2

0B2
0(B2

0 − d2
1)

2B2
0

, B1 =

√
B2

0 − d2
1, b =

c(−1 + k)k + w
−1 + k3 ,

a = −
2wB0

(−1 + k)A0
, c1 =

A0d1

B0
.

(4.24)

From (3.14) and (4.24), the mixed hyperbolic traveling wave solution of Eq (1.1) is as follows:

u1(x, y, t) =

A0 + A1 sech
[
x + ky + 1

β
w
(
t + 1

Γ(β)

)β]
+ A0d1

B0
tanh

[
x + ky + 1

β
w
(
t + 1

Γ(β)

)β]
B0 + sech

[
x + ky + 1

β
w
(
t + 1

Γ(β)

)β]√
B2

0 − d2
1 + d1 tanh

[
x + ky + 1

β
w
(
t + 1

Γ(β)

)β] , (4.25)

where A0 , 0, B0 , 0, d1 , 0, and 0 < β ≤ 1 for the valid solution. Various simulations of Eq (4.25)
are illustrated in Figure 10.

Figure 10. Revolutionary and 3D wave behaviors of Eq (4.25) are shown for the parameter
values A0 = −2, B0 = 2, k = 2, d1 = 1, y = 1,w = 4, and β = 0.9.
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Set 2. The second result is given by

A0 =
1
4

A1B0

− 1√
B2

0 − d2
1

−
3A1d1√

A2
1d2

1(B2
0 − d2

1)

 , B1 = −

√
B2

0 − d2
1,

w = (−1 + k)(−ck + b(1 + k + k2)), c1 =
A1d1

√
B2

0 − d2
1 + 3

√
A2

1d2
1(B2

0 − d2
1)

4(−B2
0 + d2

1)
,

a =
4(−ck + b(1 + k + k2)) − (B2

0 + d2
1)(−A1d1

√
B2

0 − d2
1 +

√
A2

1d2
1(B2

0 − d2
1))

A1(
√

B2
0 − d2

1

√
A2

1d2
1(B2

0 − d2
1)) + A1(−B2

0d1 + d3
1))

.

(4.26)

From (3.14) and (4.26), the mixed hyperbolic traveling wave solution for Eq (1.1) is
expressed as follows:

u2(x, y, t) =(
sech

[
x + ky +

1
β

(−1 + k)(−ck + b(1 + k + k2))
(
t +

1
Γ(β)

)β]
A1+

1
4

A1B0

(
−

1√
B2

0 − d2
1

−
3A1d1√

A2
1d2

1(B2
0 − d2

1)

)
+

(A1d1

√
B2

0 − d2
1 + 3

√
A2

1d2
1(B2

0 − d2
1)) tanh

[
x + ky + 1

β
(−1 + k)(−ck + b(1 + k + k2))

(
t + 1

Γ(β)

)β]
4(−B2

0 + d2
1)

)/
(
B0 − sech

[
x + ky +

1
β

(−1 + k)(−ck + b(1 + k + k2))
(
t +

1
Γ(β)

)β]√
B2

0 − d2
1+

d1 tanh
[
x + ky +

1
β

(−1 + k)(−ck + b(1 + k + k2))
(
t +

1
Γ(β)

)β])
,

(4.27)

where A0 , 0, B0 , 0, d1 , 0, and 0 < β ≤ 1 for the valid solution.
Set 3. The third result is provided by

A1 = −2
√

A2
0 − c2

1,

k =
(−b + c)B0 −

√
B0(−2abA0 − (3b − c)(b + c)B0)

2bB0
,

B1 =
B0

√
A2

0 − c2
1

A0
, d1 =

B0c1

A0
,

w =

aA0

(
(3b − c)B0 +

√
B0(−2abA0 − (3b − c)(b + c)B0)

)
4bB2

0

.

(4.28)
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Using (3.14) and (4.28), the mixed hyperbolic traveling wave solution for Eq (1.1) can be written as

u3(x, y, t) =(
A0 − 2 sech

[
x +

y((−b + c)B0 −
√

B0(−2abA0 − (3b − c)(b + c)B0))
2bB0

+

a(t + 1
Γ(β) )

βA0((3b − c)B0 +
√

B0(−2abA0 − (3b − c)(b + c)B0))

4bβB2
0

]√
A2

0 − c2
1+

c1 tanh
[
x +

y((−b + c)B0 −
√

B0(−2abA0 − (3b − c)(b + c)B0))
2bB0

+

a(t + 1
Γ(β) )

βA0((3b − c)B0 +
√

B0(−2abA0 − (3b − c)(b + c)B0))

4bβB2
0

])/
(
B0 +

1
A0

sech
[
x +

y((−b + c)B0 −
√

B0(−2abA0 − (3b − c)(b + c)B0))
2bB0

+

a(t + 1
Γ(β) )

βA0((3b − c)B0 +
√

B0(−2abA0 − (3b − c)(b + c)B0))

4bβB2
0

]
B0

√
A2

0 − c2
1+

1
A0

B0c1 tanh
[
x +

y((−b + c)B0 −
√

B0(−2abA0 − (3b − c)(b + c)B0))
2bB0

+

a(t + 1
Γ(β) )

βA0((3b − c)B0 +
√

B0(−2abA0 − (3b − c)(b + c)B0))

4bβB2
0

])
,

(4.29)

where A0 , 0, B0 , 0, d1 , 0, and 0 < β ≤ 1 for the valid solution.
Set 4. The fourth result is presented by

A1 = 2
√

A2
0 − c2

1, B0 = −
A0B1√
A2

0 − c2
1

, d1 = −
B1c1√
A2

0 − c2
1

,

a =
2(−ck + b(1 + k + k2))B1√

A2
0 − c2

1

,w = (−1 + k)(−ck + b(1 + k + k2)).
(4.30)

Utilizing (3.14) and (4.30), the mixed hyperbolic traveling wave solution for Eq (1.1) is given as

U4(x, y, t) =(
A0 + 2 sech

[
x + ky +

1
β

(−1 + k)(−ck + b(1 + k + k2))
(
t +

1
Γ(β)

)β]√
A2

0 − c2
1+

c1 tanh
[
x + ky +

1
β

(−1 + k)(−ck + b(1 + k + k2))
(
t +

1
Γ(β)

)β])/
(

sech
[
x + ky +

1
β

(−1 + k)(−ck + b(1 + k + k2))
(
t +

1
Γ(β)

)β]
B1−

A0B1√
A2

0 − c2
1

−
B1c1√
A2

0 − c2
1

tanh
[
x + ky +

1
β

(−1 + k)(−ck + b(1 + k + k2))
(
t +

1
Γ(β)

)β])
,

(4.31)

where A0 , 0, B0 , 0, d1 , 0, and 0 < β ≤ 1 for the valid solution.
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4.4. RSGEM solution of the (2+1)-dimensional mKdV equation

For Eq (4.15), we choose N = M = 1, allowing the test function for the solution to be formulated as

U(w) =
A0 + A1 sin(w) + c1 cos(w)
B0 + B1 sin(w) + d1 cos(w)

, (4.32)

where A0 , B0, A1 , B1, and c1 , d1, while ensuring that neither that neither B1 nor d1 is zero
simultaneously. If A0 = B0, A1 = B1, and c1 = d1, then the solution simplifies to a trivial form. By
substituting Eq (4.32) into (4.15), we generate an algebraic equation involving trigonometric terms
of different orders. Aligning the coefficients of terms with equivalent powers results in a system of
equations. Solving this system computationally yields the following outcomes.
Set 1. If we select the coefficients

A0 = −
iA1d1

B0
, B1 = id1, b =

c(−1 + k)k + 2w
−1 + k3 , a =

3wB2
0

(−1 + k)A2
1

, c = −iA1, (4.33)

we obtain the following solution in the form of a mixed hyperbolic function:

u1(x, y, t)

= −
iA1

d1

(
1 +

−B2
0d2

1

B0

(
B0 + d1

(
i sech

[
x + ky + w

β

(
t + 1

Γ(β)

)β]
+ tanh

[
x + ky + w

β

(
t + 1

Γ(β)

)β]))), (4.34)

where A0 , 0, B0 , 0, d1 , 0, and 0 < β ≤ 1 for the valid solution. Various graphs of Eq (4.34) are
displayed in Figure 11.

Figure 11. Revolutionary and 3D wave behaviors of Eq (4.34) are shown for the parameter
values A1 = −2, B0 = 1, k = 2, d1 = 3, y = 2,w = 1, and β = 0.9.

Set 2. Considering

A1 =
iA0

√
B2

0 − B2
1 − d2

1

d1
, b =

c(−1 + k)k + 2w
−1 + k3 , a = −

3wd2
1

(−1 + k)A2
0

, c1 =
A0B0

d1
, (4.35)
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yields the following solution in terms of mixed hyperbolic functions:

u2(x, y, t)

=

A0

(
d1 + i sech

[
x + ky + w

β

(
t + 1

Γ(β)

)β]√
B2

0 − B2
1 − d2

1 + B0 tanh
[
x + ky + w

β

(
t + 1

Γ(β)

)β])
d1

(
B0 + sech

[
x + ky + w

β

(
t + 1

Γ(β)

)β]
B1 + d1 tanh

[
x + ky + w

β

(
t + 1

Γ(β)

)β]) ,
(4.36)

where A0 , 0, B0 , 0, d1 , 0, B2
0 , B2

1 + d2
1, and 0 < β ≤ 1 for the valid solution. Various graphs of

Eq (4.36) are shown in Figures 12 and 13.

Figure 12. Revolutionary wave behaviors of Eq (4.36) are shown for the parameter values
A0 = 3,w = 2, B0 = 3, k = 2, d1 = 1, y = 3, A1 = 2, B1 = 2, and β = 0.9.

Figure 13. Three-dimensional wave behaviors of Eq (4.36) are shown for the parameter
values A0 = 3,w = 2, B0 = 3, k = 2, d1 = 1, y = 3, A1 = 2, B1 = 2, and β = 0.9.

Set 3. Selecting the coefficients

A1 = −
iA0

√
B2

0 − d2
1

d1
, B1 = 0, b =

c(−1 + k)k + 2w
−1 + k3 , a = −

3wd2
1

(−1 + k)A2
0

, c1 =
A0B0

d1
, (4.37)
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produces the following solution in the form of mixed hyperbolic functions:

u3(x, y, t) =

A0

(
d1 − i sech

[
x + ky + w

β

(
t + 1

Γ(β)

)β]√
B2

0 − d2
1 + B0 tanh

[
x + ky + w

β

(
t + 1

Γ(β)

)β])
d1

(
B0 + d1 tanh

[
x + ky + w

β

(
t + 1

Γ(β)

)β]) ,
(4.38)

where A0 , 0, B0 , 0, d1 , 0, B2
0 , d2

1, and 0 < β ≤ 1 for the valid solution. Various graphs of
Eq (4.38) are shown in Figure 14.

Figure 14. Revolutionary and 3D wave behaviors of Eq (4.38) are illustrated using the
parameter values A0 = 3,w = 2, B0 = 3, k = 2, d1 = 1, y = 3, and β = 0.9.

5. Results and discussion

The analytical solutions derived using SGEM and RSGEM methods, presented in Sections 4,
provide significant insights into the behavior of nonlinear systems. These solutions encompass diverse
forms, including hyperbolic, trigonometric, exponential, and mixed solutions, and their behaviors are
depicted through a series of revolutionary and 3D figures. The waveforms thus obtained, such as
solitary and periodic waves, represent fundamental solutions in nonlinear dynamics. For instance,
the hyperbolic solutions visualized in Figure 3 exhibit localized wave structures resembling solitons,
which are crucial for understanding phenomena like shallow-water wave propagation and plasma
turbulence. These solutions underscore the capability of the SGEM in modeling systems with
minimal dispersion effects. The results highlight the influence of parameters such as A0, B0, k, and
β. For example, in Figures 12–14, varying the parameter β demonstrates its role in controlling
waves’ steepness and amplitude. Higher values of β result in smoother wave profiles, indicating the
adaptability of the RSGEM to capture different physical conditions. The mixed hyperbolic traveling
wave solutions derived via the RSGEM provide a richer dynamic range compared with the standard
trigonometric solutions of the SGEM. As illustrated in Figure 10, the rational forms incorporate
amplitude modulation and phase shifts, enabling a detailed exploration of complex wave interactions
in nonlinear systems. This contrast emphasizes the extended capabilities of the RSGEM. The stability
of these solutions aligns with the governing equations, demonstrating their robustness for modeling
various physical phenomena. Applications of these solutions include modeling optical solitons in fiber
optics, acoustic wave propagation in non-uniform atmospheric layers, and energy transfer mechanisms
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in nonlinear systems. The exponential solutions, such as those in Eqs (4.25) and (4.34), offer potential
for describing rapid energy transfer processes. The simulations in Figures 1–14 not only validate the
solutions but also provide a visual representation of their dynamics. For instance, Figure 6 highlights
the transition from localized wave structures to periodic patterns under specific parameter settings,
offering insights into the interplay of nonlinear effects and dispersion.

6. Conclusions

In this paper, we first presented the general properties of recently developed the SGEM and
RSGEM for constructing analytic solutions to Eqs (1.1) and (1.2). The RSGEM extends the SGEM
by incorporating the two main properties of the sine-Gordon equation. Using both, the SGEM and
RSGEM, a detailed investigation of the nonlinear (2+1)-dimensional gKdV and mKdV equations
was conducted. These methods are capable of generating a variety of solutions, including traveling
waves, periodic waves, and solitary wave solutions. We applied the SGEM to the generalized forms
of the (2+1)-dimensional gKdV and mKdV equations, which play a crucial role in modeling shallow-
water waves. Through this method, we conducted a detailed investigation of the nonlinear (2+1)-
dimensional gKdV and mKdV equations. Using the SGEM and RSGEM, we derived several new
solutions, including complex, trigonometric, exponential, and mixed hyperbolic function solutions for
the gKdV and mKdV equations, as shown in Eqs (4.6), (4.8), (4.10), (4.12), (4.18), (4.20), and (4.22).
These new solutions are inherent to the general properties of the SGEM and contribute to understanding
the dynamic behavior of various scientific phenomena, such as water waves, solitons, and explosive
processes. Alongside these wave solutions, we obtained the exponential function solutions given in
Eqs (4.25), (4.27), (4.34), and (4.36), which differ from the SGEM results. These additional solutions
come from the unique properties of the RSGEM. Furthermore, we verified that all the solutions satisfied
the nonlinear (2+1)-dimensional gKdV equation (1.1) and mKdV equation (1.2). We also presented
simulations of these solutions based on different parameter values, with the results illustrated through
3D, 2D, and revolutionary plots. The figures and results reveal significant properties of the generalized
KdV and mKdV models, including complex, hyperbolic, exponential, and mixed hyperbolic solutions.
It is estimated that these solutions of u(x, y, t) may provide valuable insights into interactions between
long waves with well-defined dispersion relationships. The results and corresponding graphs provide
a comprehensive evaluation of the SGEM and RSGEM, demonstrating that these are an effective and
flexible method for obtaining analytic solutions for a broad class of NLPDEs. As such, they are well-
suited for addressing a wide range of scientific and engineering problems. Additionally, the findings
presented in this paper highlight the potential of the proposed method for application in other areas
of study.
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