Research article

Approximation by the heat kernel of the solution to the transport-diffusion equation with the time-dependent diffusion coefficient

  • Received: 02 December 2024 Revised: 20 January 2025 Accepted: 24 January 2025 Published: 11 February 2025
  • MSC : 35K58, 35K15

  • In this paper, we examined the transport-diffusion equation in $ \mathbb{R}^d $, where the diffusion is represented by the Laplace operator multiplied by a function $ \kappa(t) $ dependent on time. We transformed the equation using the inverse function of $ s(t) = \int_0^t {\kappa(t')} dt' $. This transformation allowed us to construct a family of approximate solutions by using the heat kernel and translation corresponding to the transport in each step of time discretization. We proved the uniform convergence of these approximate solutions and their first and second derivatives with respect to the spatial variables. We also showed that the limit function satisfies the transport-diffusion equation in the space $ \mathbb{R}^d $.

    Citation: Lynda Taleb, Rabah Gherdaoui. Approximation by the heat kernel of the solution to the transport-diffusion equation with the time-dependent diffusion coefficient[J]. AIMS Mathematics, 2025, 10(2): 2392-2412. doi: 10.3934/math.2025111

    Related Papers:

  • In this paper, we examined the transport-diffusion equation in $ \mathbb{R}^d $, where the diffusion is represented by the Laplace operator multiplied by a function $ \kappa(t) $ dependent on time. We transformed the equation using the inverse function of $ s(t) = \int_0^t {\kappa(t')} dt' $. This transformation allowed us to construct a family of approximate solutions by using the heat kernel and translation corresponding to the transport in each step of time discretization. We proved the uniform convergence of these approximate solutions and their first and second derivatives with respect to the spatial variables. We also showed that the limit function satisfies the transport-diffusion equation in the space $ \mathbb{R}^d $.



    加载中


    [1] L. Ait Mahiout, H. Fujita Yashima, Convergence de la solution d'une équation de transport-diffusion vers la solution d'une équation de transport, Ann. Math. Afr., 10 (2023), 105–124.
    [2] M. Aouaouda, A. Ayadi, H. Fujita Yashima, Convergence of approximate solutions by heat kernel for transport-diffusion equation in a half-plane, J. Samara State Tech. Univ., Ser. Phys. Math. Sci, 26 (2022), 222–258. https://doi.org/10.14498/vsgtu1881 doi: 10.14498/vsgtu1881
    [3] H. Fujita Yashima, L. Ait-Mahiout, Convergence of solution of transport-diffusion system to that of transport system, Bull. Buryat St. Univ. Math. Inf., 2023 (2023), 22–36.
    [4] M. I. Freidlin, A. D. Wentzell, Random perturbations of dynamical systems, 3 Eds., Berlin: Springer, 2012.
    [5] R. Gherdaoui, L. Taleb, S. Selvaduray, Convergence of the heat kernel approximated solutions of the transport-diffusion equation in the half-space, J. Math. Anal. Appl., 527 (2023), 127507. https://doi.org/10.1016/j.jmaa.2023.127507 doi: 10.1016/j.jmaa.2023.127507
    [6] R. Gherdaoui, S. Selvaduray, H. Fujita Yashima, Convergence of approximate solutions for transport-diffusion equation in the half-space with Neumann condition, Bull. Irkutsk State Uni. Ser. Math., 48 (2024), 64–79. https://doi.org/10.26516/1997-7670.2024.48.64 doi: 10.26516/1997-7670.2024.48.64
    [7] O. A. Ladyzhenskaja, V. A. Solonnikov, N. N. Ural'tseva, Linear and quasi-linear equations of parabolic type, Providence: American Mathematical Society, 1968.
    [8] A. Nemdili, F. Korichi, H. Fujita-Yashima, Approximation of the solution of transport-diffusion equation in Hölder space, J. Samara State Tech. Uni., Ser. Phys. Math. Sci., 28 (2024), 426–444. https://doi.org/10.14498/vsgtu2097 doi: 10.14498/vsgtu2097
    [9] É. Pardoux, S. Peng, Backward doubly stochastic differential equations and systems of quasi-linear SPDEs, Prob. Th. Rel. Fields, 98 (1994), 209–227. https://doi.org/10.1007/BF01192514 doi: 10.1007/BF01192514
    [10] É. Pardoux, A. Răşcanu, Stochastic differential equations, backward SDEs, partial differential equations, Berlin: Springer 2014.
    [11] É. Pardoux, A. Y. Veretennikov, Averaging of backward stochastic differential equations, with applications to semi-linear PDE's, Stochastics Stochastics Rep., 60 (1997), 255–270. https://doi.org/10.1080/17442509708834109 doi: 10.1080/17442509708834109
    [12] H. Smaali, H. Fujita Yashima, Une généralisation de l'approximation par une moyenne locale de la solution de l'équation de transport-diffusion, Ann. Math. Afr., 9 (2021), 89–108.
    [13] L. Taleb, S. Selvaduray, H. Fujita Yashima, Approximation par une moyenne locale de la solution de l'équation de transport-diffusion, Ann. Math. Afr., 8 (2020), 53–73.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(178) PDF downloads(45) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog