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Abstract: In this paper, we examined the transport-diffusion equation in Rd, where the diffusion is
represented by the Laplace operator multiplied by a function κ(t) dependent on time. We transformed
the equation using the inverse function of s(t) =

∫ t

0
κ(t′)dt′. This transformation allowed us to construct

a family of approximate solutions by using the heat kernel and translation corresponding to the
transport in each step of time discretization. We proved the uniform convergence of these approximate
solutions and their first and second derivatives with respect to the spatial variables. We also showed
that the limit function satisfies the transport-diffusion equation in the space Rd.
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1. Introduction

As a parabolic equation, the transport-diffusion equation was treated in many studies and well-
consolidated methods are known [7]. Concerning the behavior of the solution of the transport-diffusion
equation when the diffusion coefficient tends to zero, results have been obtained using the stochastic
representation of the solution of a parabolic equation [4]. However, these results are expressed in the
language of probability theory, and it might not be straightforward to translate them into the language
of mathematical analysis. Furthermore, in this framework, the treatment of non-linear terms is not
easy, see [9–11].

In recent years, a method inspired by the idea of the stochastic representation of the solution but
formulated in the language of mathematical analysis without using probability concepts has been
proposed. First, the convergence of approximate solutions constructed by the heat kernel at each
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discrete time step toward the solution of the transport-diffusion equation in Rd with a constant
diffusion coefficient was demonstrated [12, 13]. Then, this result was generalized to the case of the
equation considered in the half-space with homogeneous Dirichlet boundary condition [2, 5] and with
homogeneous Neumann boundary condition [6]. Furthermore, using the approximate solutions of this
type, the convergence of the solution of the transport-diffusion equation in Rd toward that of the
transport equation were shown [1, 3]. On the other hand, in [8], approximate solutions for the
transport-diffusion equation in Rd and their limit function are considered, and it was proved that the
limit function belongs to the Hölder space corresponding to the regularity of the given functions and
satisfies the equation.

In this paper, we consider the transport-diffusion equation in Rd where the diffusion is represented
by the Laplace operator multiplied by a function κ(t). More precisely, we consider the equation

∂tu(t, x) + v(t, x) · ∇u(t, x) = κ(t)∆u(t, x) + f (t, x, u(t, x)).

Here and throughout, v · ∇ =
∑d

i=1 vi∂xi , and ∆ =
∑d

i=1 ∂
2
xi

.
Let us recall that in [12] and [13], the family of approximate solutions was defined on the discretized

time family {t[n]
k }
∞
k=0, n = 1, 2, · · · ,

0 = t[n]
0 < t[n]

1 < · · · < t[n]
k < t[n]

k+1 < · · · , t[n]
k = k2−n,

using the heat kernel, i.e., the fundamental solution of the heat equation

Θn(x) =
1

(4πκδn)d/2 exp(−
|x|2

4κδn
), δn =

1
2n = t[n]

k − t[n]
k−1,

over each interval [t[n]
k−1, t[n]

k ] of the time discretization. The specific propertyΘn(x) = (Θn+1∗Θn+1)(x) of
Gaussian functions was the technical basis in the demonstration of the convergence of the approximate
solutions. But, if κ varies with the time t, this technique cannot be applied directly.

To overcome this difficulty arising from the non-constancy of the coefficient κ(t), we transform the
equation using the inverse function of the function s(t) =

∫ t

0
κ(t′)dt′. This allows us to construct a

family of approximate solutions similarly to the research in [12, 13]. However, to demonstrate their
convergence, it is essential to examine carefully the inequalities used, in which the consequences of the
transformation of the equation also step in. In what follows, we aim to identify a reasonably large class
of functions κ(t) for which we can obtain the convergence of the approximate solutions to the solution
of the transport-diffusion equation.

2. General result with κ = κ(t)

Let us consider the equation for the unknown function u(t, x) : R+ × Rd → R

∂tu(t, x) + v(t, x) · ∇u(t, x) = κ(t)∆u(t, x) + f (t, x, u(t, x)), t > 0, x ∈ Rd, (2.1)

where κ(t) : R+ → R+, v(t, x) : R+ × Rd → Rd, and f (t, x, u) : R+ × Rd × R → R are given functions.
Eq (2.1) will be envisaged with the initial condition

u(0, x) = u0(x) x ∈ Rd. (2.2)
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For the function κ(t), we assume that

κ(t) > 0 a.e. in R+, (2.3)

and for any sequence {[an, bn[ }∞n=1 of disjoint intervals contained in R+, we have

∀ε > 0 ∃δ > 0 such that, if
∞∑

n=1

∫ bn

an

κ(t)dt ≤ δ then
∞∑

n=1

(bn − an) ≤ ε, (2.4)

κ(·) ∈ L1
loc(R+). (2.5)

The conditions (2.3) and (2.5) imply that the function

s(t) =
∫ t

0
κ(t′)dt′ (2.6)

is invertible. We also note that the condition (2.4) implies that the inverse function of s(t), denoted
by t(s), is absolutely continuous. As for the conditions on the functions v(t, x) and f (t, x, u), we will
specify them in the statement of the theorem.

Next, we will consider a family of approximate solutions for Eq (2.1). For their definition, we will
use the notation

δn = 2−n, n = 1, 2, · · · , (2.7)

and for each n, the function

Θn(x) =
1

(4πδn)d/2 exp(−
|x|2

4δn
), x ∈ Rd. (2.8)

We also introduce the class of functions

Λ = {φ : D→ R, continuous,
∞∑

n=1

λτ,n(φ) < ∞, ∀τ > 0 }, (2.9)

where D = R+ × Rd or D = R+ × Rd × R and

λτ,n(φ) = sup{ |φ(r1, x) − φ(r2, x)| : r1, r2 ∈ [0, τ], x ∈ Rd, |r1 − r2| ≤ δn } (2.10)

if D = R+ × Rd, and

λτ,n(φ) = sup{ |φ(r1, x, u) − φ(r2, x, u)| : r1, r2 ∈ [0, τ], x ∈ Rd, u ∈ R, |r1 − r2| ≤ δn } (2.11)

if D = R+ × Rd × R.
In this paper, we use the notations

Dν
x =

∂|ν|

∂xν1
1 · · · ∂xνd

d

, Dν
x,u =

∂|ν|

∂xν1
1 · · · ∂xνd

d ∂uνd+1
,

where

|ν| =

d∑
j=1

ν j if ν = (ν1, · · · , νd) ∈ Nd,

AIMS Mathematics Volume 10, Issue 2, 2392–2412.



2395

|ν| =

d+1∑
j=1

ν j if ν = (ν1, · · · , νd, νd+1) ∈ Nd+1.

Furthermore, we denote by Cb(D) the class of continuous and bounded functions defined on the
domain D.

The general result of the present work is the following theorem.

Theorem 1. Suppose that the function κ(t) satisfies conditions (2.3)–(2.5), and the functions v(t, x) and
f (t, x, u) (with the function κ(t)) satisfy the conditions:

1
κ(t)

Dν
xv(t, x) ∈ Cb([0, τ] × Rd)) ∀ν ∈ Nd, |ν| ≤ 3, ∀τ > 0, (2.12)

1
κ(t(s))

Dν
xv(t(s), x) ∈ Λ ∀ν ∈ Nd, |ν| ≤ 2, (2.13)

1
κ(t)

Dν
x,u f (t, x, u)
1 + |u|

∈ Cb([0, τ] × Rd × R) ∀ν ∈ Nd+1, |ν| ≤ 3, ∀τ > 0, (2.14)

1
κ(t(s))

Dν
x,u f (t(s), x, u) ∈ Λ ∀ν ∈ Nd+1, |ν| ≤ 2, (2.15)

Dν
xu0(x) ∈ Cb(Rd) ∀ν ∈ Nd, |ν| ≤ 3. (2.16)

(In (2.13) and (2.15), the functions are considered as functions of (s, x) and (s, x, u), respectively.)
If we define

s[n]
k = kδn, t[n]

k = t(s[n]
k ), n = 1, 2, . . . , k = 0, 1, 2, . . . , (2.17)

then, for any τ > 0, the functions u[n](t, x) defined by

u[n](t[n]
0 , x) = u0(x), (2.18)

u[n](t[n]
k , x) =

∫
Rd
Θn(y)u[n](t[n]

k−1, x − δn
1

κ(t[n]
k )

v(t[n]
k , x) − y) dy (2.19)

+δn
1

κ(t[n]
k−1)

f (t[n]
k−1, x, u

[n](t[n]
k−1, x)), k = 1, 2, · · · ,

u[n](t, x) =
s[n]

k − s(t)
δn

u[n](t[n]
k−1, x) +

s(t) − s[n]
k−1

δn
u[n](t[n]

k , x) for t[n]
k−1 ≤ t ≤ t[n]

k (2.20)

(with s(t) and s[n]
k defined by (2.6) and (2.17)), and their first and second derivatives with respect to

x ∈ Rd, converge uniformly on [0, τ] × Rd toward a function u(t, x) and its first and second derivatives
with respect to x ∈ Rd, and the limit function u(t, x) satisfy Eq (2.1) and the initial condition (2.2) in
the sense of integral equality:

−

∫ ∞

0
u(t, x)

d
dt
φ(t)dt − u0(x)φ(0) +

∫ ∞

0
v(t, x) · ∇u(t, x)φ(t)dt (2.21)

=

∫ ∞

0
(κ(t)∆u(t, x) + f (t, x, u))φ(t)dt

for any φ(·) ∈ C1(R+) such that φ(t) = 0 for t ≥ τ1 with τ1 > 0.
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3. Case of functions given with Hölder continuity

Since the conditions (2.13) and (2.15) are formulated through the inverse function t(s), to have a
more concrete idea, we mention a class of functions (κ(t), v(t, x), f (t, x, u)) that satisfies the
conditions (2.13) and (2.15).

Lemma 2. Suppose that the function κ(t) satisfies the conditions (2.3) and (2.5), and for each τ > 0,
there exists a number α = α(τ), 0 < α < 1, and a constant C1 = C1(τ) such that

t2 − t1 ≤ C1

(∫ t2

t1
κ(t)dt

)α
∀t1, t2 ∈ [0, τ], t1 < t2. (3.1)

Furthermore, suppose that for each τ > 0, there exist numbers β = β(τ) and γ = γ(τ) such that
0 < β < 1 and 0 < γ < 1, and the functions v(t, x) and f (t, x, u) satisfy the relations:

sup
0≤t1<t2≤τ,x∈Rd

|Dν
xv(t2, x) − Dν

xv(t2, x)|
(t2 − t1)β

< ∞, ∀ν ∈ Nd, |ν| ≤ 2, (3.2)

sup
0≤t1<t2≤τ,x∈Rd ,u∈R

|Dν
x,u f (t2, x, u) − Dν

x f (t2, x, u)|
(t2 − t1)γ

< ∞, ∀ν ∈ Nd+1, |ν| ≤ 2. (3.3)

Then the functions v(t(s), x) and f (t(s), x, u) (with the function κ(t(s))) satisfy the conditions (2.13)
and (2.15).

Proof. Fix τ > 0. From (3.1) and (3.2), we deduce that there exists a constant C2 = C2(τ) such that

λτ,n

(
1

κ(t(·))
Dν

xv(t(·), ·)
)
≤ C2 sup

0≤t1<t2≤τ, s(t2)−s(t1)≤δn

|t2 − t1|
β ≤ C2C

β
1(δn)βα.

Similarly, from (3.1) and (3.3), we deduce that there exists a constant C3 = C3(τ) such that

λτ,n

(
1

κ(t(· · · ))
Dν

x f (t(· · · ), ·, ·)
)
≤ C3 sup

0≤t1<t2≤τ, s(t2)−s(t1)≤δn

|t2 − t1|
γ ≤ C3C

γ
1(δn)γα.

Since 0 < βα < 1 and 0 < γα < 1, it follows that
∞∑

n=1

λτ,n

(
1

κ(t(·))
Dν

xv(t(·), ·)
)
≤ C2C

β
1

∞∑
n=1

(δn)βα < ∞,

∞∑
n=1

λτ,n

(
1

κ(t(·))
Dν

x,u f (t(·), ·, ·)
)
≤ C3C

γ
1

∞∑
n=1

(δn)γα < ∞,

which means that the functions v(t(s), x) and f (t(s), x, u) (with the function κ(t(s))) satisfy
conditions (2.13) and (2.15). The lemma is proved. □

With Lemma 2 proved, under the assumption of the validity of Theorem 1, we can state the
following result, which immediately follows from Theorem 1 and Lemma 2.

Corollary 3. Suppose that the functions κ(t), v(t, x), f (t, x, u), and u0(x) satisfy the conditions (2.3)–
(2.5), (2.12), (2.14), (2.16), and (3.1)–(3.3). Then, for any τ > 0, the functions u[n](t, x) defined by
(2.18)–(2.20) (with s(t) and s[n]

k defined by (2.6) and (2.17)) and their first and second derivatives
with respect to x ∈ Rd converge uniformly in [0, τ] × Rd to a function u(t, x) and its first and second
derivatives with respect to x ∈ Rd, and the limit function u(t, x) satisfies equation (2.1) and the initial
condition (2.2) in the sense of integral equality (2.21).
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4. Theorem for the equation with the κ constant

We will prove Theorem 1 by transforming Eq (2.1) into an equation with the diffusion coefficient
κ = 1. Theorem 1 will result from the theorem for the equation with the constant diffusion coefficient
κ, which we will prove subsequently.

Consider the equation

∂tu(t, x) + v(t, x) · ∇u(t, x) = ∆u(t, x) + f (t, x, u(t, x)), t > 0, x ∈ Rd, (4.1)

and the initial condition
u(0, x) = u0(x), x ∈ Rd. (4.2)

The first term on the right-hand side of (4.1) can be κ∆u(t, x) instead of ∆u(t, x), but this generalization
is almost immediate. Therefore, here we consider the equation in the form of (4.1). For this problem,
we have the following theorem.

Theorem 4. Suppose that

Dν
xv(t, x) ∈ Cb([0, τ] × Rd)) ∀ν ∈ Nd, |ν| ≤ 3, ∀τ > 0, (4.3)

Dν
xv(t, x) ∈ Λ ∀ν ∈ Nd, |ν| ≤ 2, (4.4)

Dν
x,u f (t, x, u)
1 + |u|

∈ Cb([0, τ] × Rd) ∀ν ∈ Nd+1, |ν| ≤ 3, ∀τ > 0, (4.5)

Dν
x,u f (t, x, u) ∈ Λ ∀ν ∈ Nd+1, |ν| ≤ 2, (4.6)

Dν
xu0(x) ∈ Cb(Rd) ∀ν ∈ Nd, |ν| ≤ 3, (4.7)

where Λ is the function class defined by (2.9). Let us also define

t[n]
k = kδn, δn = 2−n. (4.8)

Then, for any τ > 0, the functions u[n](t, x) defined by

u[n](t[n]
0 , x) = u0(x), (4.9)

u[n](t[n]
k , x) =

∫
Rd
Θn(y)u[n](t[n]

k−1, x − δnv(t[n]
k , x) − y)dy

+δn f (t[n]
k−1, x, u

[n](t[n]
k−1, x)), k = 1, 2, · · · , (4.10)

u[n](t, x) =
t[n]
k − t
δn

u[n](t[n]
k−1, x) +

t − t[n]
k−1

δn
u[n](t[n]

k , x) for t[n]
k−1 ≤ t ≤ t[n]

k , (4.11)

and their first and second derivatives with respect to x ∈ Rd, converge uniformly in [0, τ] × Rd to a
function u(t, x) and its first and second derivatives with respect to x ∈ Rd, and the limit function u(t, x)
satisfies Eq (4.1) and the initial condition in the sense of the integral equality

−

∫ ∞

0
u(t, x)

d
dt
φ(t)dt−u0(x)φ(0)+

∫ ∞

0
v(t, x) · ∇u(t, x)φ(t)dt =

∫ ∞

0
(∆u(t, x) + f (t, x, u))φ(t)dt (4.12)

for every φ(·) ∈ C1(R+) such that φ(t) = 0 for t ≥ τ1 with a τ1 > 0.
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The proof of Theorem 4 follows the scheme developed in [12, 13]. The demonstration of the
estimates of the approximate solutions and their derivatives with respect to x ∈ Rd does not differ
from that presented in [12, 13] only for simple modifications. However, to prove the convergence of
the approximate solutions, we need to specify the consequence of the conditions (4.4) and (4.6),
which was not explicitly exposed in [12, 13]. Therefore, before we begin the essential part of the
proof of Theorem 4, let us revisit the estimates of the approximate solutions.

Lemma 5. Assume that the hypotheses of Theorem 4 hold. Let u[n](t, x) be the functions defined
by (2.18)–(2.20). Then, there exist functions Φ0(t), Φ1(t), Φ2(t), and Φ3(t) that are continuous on R+,
increasing, independent of n, and such that we have

sup
x∈Rd
|u[n](t, x)| ≤ Φ0(t), (4.13)

∑
|ν|=1

sup
x∈Rd

∣∣∣∣Dν
xu

[n](t, x)
∣∣∣∣ ≤ Φ1(t), (4.14)

∑
|ν|=2

sup
x∈Rd

∣∣∣∣Dν
xu

[n](t, x)
∣∣∣∣ ≤ Φ2(t), (4.15)

∑
|ν|=3

sup
x∈Rd

∣∣∣∣Dν
xu

[n](t, x)
∣∣∣∣ ≤ Φ3(t) (4.16)

for all t ≥ 0 and for all n ∈ N\{0}.

Proof. The existence of Φ0(t) satisfying (4.13) can be established similarly to Lemma 5 in [5] and
Lemma 1 in [2]. We note that if we fix τ > 0, according to condition (4.5), the function Dν

x,u f (t, x, u)
with |ν| ≤ 3 is continuous and bounded in [0, τ] × Rd. Hence, the lemma can be demonstrated in a
manner entirely analogous to [12] and [13]. □

5. Proof of Theorem 4

Having recalled the necessary estimates of the approximate solutions and their derivatives, we now
proceed with the proof of Theorem 4.

Proof. We will demonstrate it in stages: Step 1 – Convergence of the approximate solutions.
Step 2 – Convergence of their first derivative. Step 3 – Convergence of their second derivatives.
Step 4 – Passage to the limit.
To simplify the presentation, we introduce the fellowing notations:

λτ,n(v) = max
|ν|≤2

λτ,n

(
1

κ(t(·))
Dν

xv(t(·), ·)
)
,

λτ,n( f ) = max
|ν|≤2

λτ,n

(
1

κ(t(· · · ))
Dν

x f (t(· · · ), ·, ·)
)
,

λτ,n = max(λτ,n(v), λτ,n( f ))
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(for the symbol λτ,n(·), see (2.10) and (2.11)). Moreover, in different inequalities, we simply denote C
(or C′) as constants that may depend on τ but do not depend on n, when it is not necessary to specify
them.

Step 1 –Convergence of the approximate solutions: We will prove that, for any τ > 0, the functions
u[n](t, x) converge uniformly to a function u(t, x) on [0, τ] × Rd as n→ ∞.

Let us first examine the difference between u[n+1](t[n+1]
2k , x) and u[n](t[n]

k , x) for n = 1, 2, · · · and k =
0, 1, · · · (recalling that t[n+1]

2k = t[n]
k (see (4.8))). Applying the definition (4.10) twice and using the

notation
ξ[n′]

k′ (x, y) = x − δn′v(t[n′]
k′ , x) − y (5.1)

for k′ = k + 1 (or 2k + 1 or 2k + 2) and n′ = n (or n + 1), we have

u[n+1](t[n+1]
2k+2 , x) = I[n+1]

2k + J[n+1]
a,2k + J[n+1]

b,2k , (5.2)

where
I[n+1]
2k =

∫
Rd

∫
Rd
Θn+1(y1)Θn+1(y2)u[n+1](t[n+1]

2k , ξ∗(y1, y2))dy1dy2, (5.3)

ξ∗(y1, y2) = ξ[n+1]
2k+2 (x, y1) − δn+1v(t[n+1]

2k+1 , ξ
[n+1]
2k+2 (x, y1)) − y2,

J[n+1]
a,2k = δn+1

∫
Rd
Θn+1(y)

× f (t[n+1]
2k , ξ[n+1]

2k+2 (x, y), u[n+1](t[n+1]
2k , ξ[n+1]

2k+2 (x, y)))dy, (5.4)

J[n+1]
b,2k = δn+1 f (t[n+1]

2k+1 , x,U1 + U2), (5.5)

U1 =

∫
Rd
Θn+1(y)u[n+1](t[n+1]

2k , ξ[n+1]
2k+1 (x, y))dy,

U2 = δn+1 f (t[n+1]
2k , x, u[n+1](t[n+1]

2k , x)).

Therefore, recalling once again the definition (4.10) and the relation δn = 2δn+1, we have

u[n+1](t[n+1]
2k+2 , x) − u[n](t[n]

k+1, x) = D(0) + D(a) + D(b), (5.6)

where
D(0) = I[n+1]

2k −

∫
Rd
Θn(y)u[n](t[n]

k , ξ[n]
k+1(x, y))dy,

D(a) = J[n+1]
a,2k − δn+1 f (t[n]

k , x, u[n](t[n]
k , x)),

D(b) = J[n+1]
b,2k − δn+1 f (t[n]

k , x, u[n](t[n]
k , x)).

To estimate D(0), we note that, thanks to the well-known property of Gaussian functions, we have∫
Rd
Θn(z)u[n](t[n]

k , ξ[n]
k+1(x, z))dz =

∫
Rd

∫
Rd
Θn+1(y1)Θn+1(y2)u[n](t[n]

k , ξ[n]
k+1(x, y1 + y2))dy1dy2

and thus

D(0) =

∫
Rd

∫
Rd
Θn+1(y1)Θn+1(y2) × (u[n+1](t[n+1]

2k , ξ∗(y1, y2)) − u[n](t[n]
k , ξ[n]

k+1(x, y1 + y2)))dy1dy2.
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Now, based on the definition of λτ,n+1(·), we have

|v(t[n+1]
2k+1 , ξ) − v(t[n]

k+1, ξ)| = |v(t[n+1]
2k+1 , ξ) − v(t[n+1]

2k+1 + δn+1, ξ)| ≤ λτ,n+1(v),

and recalling the expression for ξ∗(y1, y2) and ξ[n]
k+1(x, y1 + y2), we obtain

|ξ∗(y1, y2) − ξ[n]
k+1(x, y1 + y2)| = δn+1|v(t[n+1]

2k+1 , ξ
[n+1]
2k+2 (x, y1)) − v(t[n]

k+1, x)|

≤ δn+1(λτ,n+1(v) + sup |∇v|(δn+1 sup |v| + |y1|)).

Note that we simply write sup |∇v| instead of sup
(t,y)∈[0,τ]×Rd

|∇v(t, x)| , wherever this abbreviated notation

does not cause ambiguity. It follows that∣∣∣u[n+1](t[n+1]
2k , ξ∗(y1, y2)) − u[n](t[n]

k , ξ[n]
k+1(x, y1 + y2))

∣∣∣ (5.7)

≤ sup
y∈Rd
|u[n+1](t[n+1]

2k , y) − u[n](t[n]
k , y)| + sup |∇u[n+1]|(δn+1λτ,n+1(v)

+ δn+1 sup |∇v|(δn+1 sup |v| + |y1|)).

Therefore, considering Lemma 5 and the relation
∫
Rd
Θn+1(y1)|y1|dy1 =

2
√
δn+1
√
π

, we deduce that there

exists a constant K1 such that

|D(0)| ≤ sup
y∈Rd
|u[n+1](t[n+1]

2k , y) − u[n](t[n]
k , y)| + K1δn+1(λτ,n+1(v) + δ1/2

n+1) sup |∇u[n+1]|. (5.8)

Regarding D(a), using the inequality∣∣∣ f (t[n+1]
2k , ξ[n+1]

2k+2 (x, y), u[n+1](t[n+1]
2k , ξ[n+1]

2k+2 (x, y))) − f (t[n]
k , x, u[n](t[n]

k , x))
∣∣∣

≤
(

sup |∇x f | + sup |∂u f | sup |∇u[n+1]|
)(
δn+1 sup |v| + |y|

)
+ sup |∂u f | |u[n+1](t[n+1]

2k , x) − u[n](t[n]
k , x)|,

we easily obtain

|D(a)| ≤ K2(δ2
n+1 + δ

3/2
n+1) + K2δn+1|u[n+1](t[n+1]

2k , x) − u[n](t[n]
k , x)| (5.9)

with a constant K2 independent of n.
As for D(b), recalling the expression of U1 and U2 and considering the relation

| f (t[n+1]
2k+1 , x, u

[n+1](t[n+1]
2k , x)) − f (t[n+1]

2k , x, u[n+1](t[n+1]
2k , x))| ≤ λτ,n+1( f ) (see(2.11)),

we have ∣∣∣ f (t[n+1]
2k+1 , x,U1 + U2) − f (t[n]

k , x, u[n](t[n]
k , x))

∣∣∣
≤ sup |∂u f | sup |∇u[n+1]|(δn+1 sup |v| + |y|) + δn+1 sup | f | + λτ,n+1( f )

+ sup |∂u f | |u[n+1](t[n+1]
2k , x) − u[n](t[n]

k , x)|.
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We deduce that there exists a constant K3 independent of n such that

|D(b)| ≤ K3(δ2
n+1 + δn+1(λτ,n+1( f ) + δ1/2

n+1)) + K3δn+1|u[n+1](t[n+1]
2k , x) − u[n](t[n]

k , x)|. (5.10)

Finally, from the relations (5.2), (5.6), and (5.8)–(5.10), we deduce that there exists a constant K4

independent of n such that

|u[n+1](t[n+1]
2k+2 , x) − u[n](t[n]

k+1, x)| ≤ (1 + K4δn+1) sup
y∈Rd
|u[n+1](t[n+1]

2k , y) − u[n](t[n]
k , y)| + K4δn+1(λτ,n+1 + δ

1/2
n+1).

Therefore, if we set
Yk = sup

x∈Rd
|u[n+1](t[n+1]

2k , x) − u[n](t[n]
k , x)|, (5.11)

we have
Yk+1 ≤ (1 + K4δn+1)Yk + K4δn+1(λτ,n+1 + δ

1/2
n+1), (5.12)

where, considering the relation Y0 = 0, we obtain

Yk ≤ δn+1(λτ,n+1 + δ
1/2
n+1)K4

k∑
j=0

(1 + K4δn+1)k− j ≤ (λτ,n+1 + δ
1/2
n+1)etK4 , (5.13)

or
sup
x∈Rd
|u[n+1](t, x) − u[n](t, x)| ≤ (λτ,n+1 + δ

1/2
n+1)etK4 for 0 ≤ t ≤ τ. (5.14)

As under the assumptions (4.4) and (4.6) (also refer to (2.9)), we have
∞∑

n=1

(λτ,n+1 + δ
1/2
n+1) < ∞,

and considering also the independence of K4 from n, it is evident that the inequality (5.14) and the
definition (2.20) imply that the sequence u[n](t, x) converges uniformly on [0, τ] × Rd as n→ ∞.

Step 2 –Convergence of the first derivatives of the approximate solutions –We will demonstrate that,
for any τ > 0, the functions ∂xiu

[n](t, x), i = 1, · · · , d, converge to ∂xiu(t, x) (where u(t, x) is the limit
function obtained in Step 1) uniformly on [0, τ] × Rd as n→ ∞.

We put

w[1,n]
i,k (x) =

∂

∂xi
u[n](t[n]

k , x), i = 1, · · · , d, (5.15)

and we will examine w[1,n+1]
i,2k+2 (x) − w[1,n]

i,k+1(x). To simplify the notation, let us introduce abbreviated
notations:

u[n]
k (x) = u[n](t[n]

k , x), f ′i,k(x, u[n](t[n]
k , x)) =

∂ f (t[n]
k , x, u)
∂xi

∣∣∣∣
u=u[n](t[n]

k ,x)
,

and similarly for f ′u,k(x, u[n](t[n]
k , x)). Additionally, denote by ξ[n′]

k′, j(x, y) the j-th component of the vector
ξ[n′]

k′ (x, y) (see (5.1)).
By taking the derivative of both sides of equation (4.10) with respect to xi, we obtain

w[1,n]
i,k (x) =

∫
Rd
Θn(y)

[
w[1,n]

i,k−1(ξ(x, y)) − δn

d∑
j=1

∂v j(t
[n]
k , x)
∂xi

w[1,n]
j,k−1(ξ(x, y))

]
dy (5.16)
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+ δn f ′u,k−1(x, u[n](t[n]
k−1, x))w[1,n]

i,k−1(x) + δn f ′i,k−1(x, u[n](t[n]
k−1, x)).

On the other hand, by deriving with respect to xi the right-hand side of (5.2), which corresponds to the
terms given in (5.3)–(5.5), we get

w[1,n+1]
i,2k+2 (x) =

∫
Rd

∫
Rd

Θn+1(y1)Θn+1(y2)
[
w[1,n+1]

i,2k (ξ∗) − δn+1

d∑
j=1

w[1,n+1]
j,2k (ξ∗)

(
∂xiv j(t

[n+1]
2k+2 , x) (5.17)

+

d∑
l=1

∂xlv j(t
[n+1]
2k+1 , ξ

[n+1]
2k+2 (x, y1))∂xiξ

[n+1]
2k+2,l(x, y1)

)]
dy1dy2

+ δn+1

∫
Rd

Θn+1(y1)
d∑

j=1

[
f ′j,2k(ξ

[n+1]
2k+2 (x, y1), u[n+1]

2k (ξ[n+1]
2k+2 (x, y1)))

+ f ′u,2k(ξ
[n+1]
2k+2 (x, y1), u[n+1]

2k (ξ[n+1]
2k+2 (x, y1)))w[1,n+1]

j,2k (ξ[n+1]
2k+2 (x, y1))

]
∂xiξ

[n+1]
2k+2, j(x, y1)dy1

+ δn+1 f ′i,2k+1(x, u[n+1]
2k+1 (x)) + δn+1 f ′u,2k+1(x, u[n+1]

2k+1 (x))w[n+1]
i,2k+1(x),

where ξ∗ = ξ∗(y1, y2) (see (5.3)).
From (5.16) and (5.17), it follows that

w[1,n+1]
i,2k+2 (x) − w[1,n]

i,k+1(x) =
7∑

p=1

Zp, (5.18)

where
Z1 =

∫
Rd

∫
Rd

Θn+1(y1)Θn+1(y2) ×
(
w[1,n+1]

i,2k (ξ∗) − w[1,n]
i,k (ξ[n]

k+1(x, y1 + y2))
)
dy1dy2, (5.19)

Z2 = δn+1

∫
Rd

∫
Rd

Θn+1(y1)Θn+1(y2)
d∑

j=1

ζ2, j(x, y1, y2)dy1dy2, (5.20)

ζ2, j(x, y1, y2) = −∂xiv j(t
[n+1]
2k+2 , x)w[1,n+1]

j,2k (ξ∗) + ∂xiv j(t
[n]
k+1, x)w[1,n]

j,k (ξ[n]
k+1(x, y1 + y2)),

Z3 = δn+1

∫
Rd

∫
Rd

Θn+1(y1)Θn+1(y2)
d∑

j=1

ζ3, j(x, y1, y2)dy1dy2, (5.21)

ζ3, j(x, y1, y2) = −
d∑

l=1

∂xlv j(t
[n+1]
2k+1 , ξ

[n+1]
2k+2 (x, y1))∂xiξ

[n+1]
2k+2,l(x, y1)w[1,n+1]

j,2k (ξ∗)

+∂xiv j(t
[n]
k+1, x)w[1,n]

j,k (ξ[n]
k+1(x, y1 + y2)),

Z4 = δn+1

∫
Rd

Θn+1(y1)
d∑

j=1

ζ4, j(x, y1)dy1 − δn+1 f ′i,k(x, u[n]
k (x)), (5.22)

ζ4, j(x, y1) = f ′j,2k(ξ
[n+1]
2k+2 (x, y1), u[n+1]

2k (ξ[n+1]
2k+2 (x, y1)))∂xiξ

[n+1]
2k+2, j(x, y1),
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Z5 = δn+1

∫
Rd

Θn+1(y1)
d∑

j=1

ζ5, j(x, y1)dy1 − δn+1 f ′u,k(x, u[n]
k (x))w[1,n]

i,k (x), (5.23)

ζ5, j(x, y1) = f ′u,2k(ξ
[n+1]
2k+2 (x, y1), u[n+1]

2k (ξ[n+1]
2k+2 (x, y1))) × w[1,n+1]

j,2k (ξ[n+1]
2k+2 (x, y1))∂xiξ

[n+1]
2k+2, j(x, y1),

Z6 = δn+1
(
f ′i,2k+1(x, u[n+1]

2k+1 (x)) − f ′i,k(x, u[n]
k (x))

)
, (5.24)

Z7 = δn+1
(
f ′u,2k+1(x, u[n+1]

2k+1 (x))w[1,n+1]
i,2k+1 (x) − f ′u,k(x, u[n]

k (x))w[1,n]
i,k (x)

)
. (5.25)

As
ξ∗ − ξ[n]

k+1(x, y1 + y2) = δn+1(v(t[n]
k+1, x) − v(t[n+1]

2k+1 , ξ
[n+1]
2k+2 (x, y1))),

similarly to (5.7), we have

|w[1,n+1]
i,2k (ξ∗) − w[1,n]

i,k (ξ[n]
k+1(x, y1 + y2))| ≤ sup

y∈Rd
|w[1,n+1]

i,2k (y) − w[1,n]
i,k (y)| + sup |∇w[1,n+1]

i,2k | (5.26)

× (Cδn+1λτ,n+1(v) + δn+1 sup |∇v|(δn+1 sup |v| + |y1|)).

Recall that according to Lemma 5, |∇w[1,n+1]
i,2k | is bounded by a constant independent of n. Thus, similarly

to obtaining (5.8), we get

|Z1| ≤ sup
y∈Rd
|w[1,n+1]

i,2k (y) − w[1,n]
i,k (y)| +C′δn+1(λτ,n+1(v) + δ1/2

n+1). (5.27)

Let us introduce the notation

Y [1]
k =

d∑
i=1

sup
x∈Rd
|w[1,n+1]

i,2k (x) − w[1,n]
i,k (x)|. (5.28)

Recalling that t[n+1]
2k+2 = t[n]

k+1 and using the inequality (5.26), which, written with j instead of i, is valid
for all j ∈ {1, · · · , d}, we obtain

|Z2| ≤ δn+1C(Y [1]
k +Cδn+1(λτ,n+1(v) + δ1/2

n+1)). (5.29)

Regarding ζ3, j(x, y1, y2) that appears under the integration sign in (5.21), considering the relation

∂xiξ
[n+1]
2k+2,l(x, y1) = δil − δn+1∂xivl(t

[n+1]
2k+2 , x), (5.30)

where δil is the Kronecker symbol, we have

ζ3, j(x, y1, y2) = δn+1

d∑
l=1

∂xlv j(t
[n+1]
2k+1 , ξ

[n+1]
2k+2 (x, y1))∂xivl(t

[n+1]
2k+2 , x)w[1,n+1]

j,2k (ξ∗) (5.31)

+ (∂xiv j(t
[n]
k+1, ξ

[n+1]
2k+2 (x, y1)) − ∂xiv j(t

[n+1]
2k+1 , ξ

[n+1]
2k+2 (x, y1)))w[1,n+1]

j,2k (ξ∗)

+ (∂xiv j(t
[n]
k+1, x) − ∂xiv j(t

[n]
k+1, ξ

[n+1]
2k+2 (x, y1)))w[1,n+1]

j,2k (ξ∗)
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+ ∂xiv j(t
[n]
k+1, x)(w[1,n+1]

j,2k (ξ[n]
k+1(x, y1 + y2)) − w[1,n+1]

j,2k (ξ∗))

+ ∂xiv j(t
[n]
k+1, x)(w[1,n]

j,k (ξ[n]
k+1(x, y1 + y2)) − w[1,n+1]

j,2k (ξ[n]
k+1(x, y1 + y2))).

As
|∂xiv j(t

[n]
k+1, ξ) − ∂xiv j(t

[n+1]
2k+1 , ξ)| ≤ λτ,n+1(v) (ξ ∈ Rd),

|∂xiv j(t
[n]
k+1, x) − ∂xiv j(t

[n]
k+1, ξ

[n+1]
2k+2 (x, y1))| ≤ sup |∇∂xiv j|(δn+1 sup |v| + |y1|),

given (5.26) and the values uniformly bounded by the hypotheses and Lemma 5, we have

|Z3| ≤ Cδn+1(λτ,n+1(v) + δ1/2
n+1) + δn+1CY [1]

k . (5.32)

Regarding Z4, Z5, Z6, and Z7, recalling the notation convention f ′
·,2k(x, u) = f ′

·,k(x, u) and taking into
account the relation

| f ′·,k(x(1), u(1)) − f ′·,k(x(2), u(2))| ≤ C(|x(1) − x(2)| + |u(1) − u(2)|)

and relations (4.6) and (5.30), we have

|Z4 + Z5 + Z6 + Z7| ≤ Cδn+1(λτ,n+1( f ) + δ1/2
n+1) + δn+1C(Yk + Y [1]

k ), (5.33)

where Yk is defined in (5.11).
By summing up the inequalities (5.27), (5.29), (5.32), and (5.33), we have

|w[1,n+1]
i,2k+2 (x) − w[1,n]

i,k+1(x)| ≤
7∑

p=1

|Zp|

≤ sup
y∈Rd
|w[1,n+1]

i,2k (y) − w[1,n]
i,k (y)| +Cδn+1(λτ,n+1 + δ

1/2
n+1) + δn+1C(Yk + Y [1]

k ).

As this inequality holds for any x ∈ Rd, summing up this inequality for i = 1, · · · , d, we get

Y [1]
k+1 ≤ Y [1]

k +Cδn+1(λτ,n+1 + δ
1/2
n+1) + δn+1C(Yk + Y [1]

k ). (5.34)

If we set
Ỹ [1]

k = Yk + Y [1]
k , (5.35)

then, by adding (5.34) and (5.12), we obtain

Ỹ [1]
k+1 ≤ Ỹ [1]

k +C′δn+1(λτ,n+1 + δ
1/2
n+1) + δn+1C′Ỹ

[1]
k . (5.36)

Therefore, similarly to the derivation of (5.13) (and thus (5.14)), we obtain

Ỹ [1]
k ≤ (λτ,n+1 + δ

1/2
n+1)etC′ . (5.37)

As, due to (2.9), (4.4), and (4.6), we have
∑∞

n=1(λτ,n+1 + δ
1/2
n+1) < ∞, from inequality (5.37) and

definition (2.20), we conclude that the sequence w[1,n]
i (t, x) = ∂

∂xi
u[n](t, x) converges uniformly on

[0, τ] × Rd.
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Step 3 –Convergence of second derivatives of approximate solutions –We will demonstrate that, for
any τ > 0, the functions ∂2

∂xi∂x j
u[n](t, x), i, j = 1, · · · , d, converge to ∂2

∂xi∂x j
u(t, x) (u(t, x) being the limiting

function obtained in Step 1) uniformly on [0, τ] × Rd as n→ ∞.
Let us define

w[2,n]
i j,k (x) =

∂

∂x j
w[1,n]

i,k (x) =
∂2

∂x j∂xi
u[n](t[n]

k , x) (5.38)

and initially estimate

w[2,n+1]
i j,2k+2(x) − w[2,n]

i j,k+1(x) =
7∑

p=1

∂x jZp, (5.39)

where Zp, p = 1, · · · , 7, are the terms defined in (5.19)–(5.25).
Recalling that for the l-th component ξ∗l of ξ∗ = ξ∗(y1, y2) (see (5.3)), we have

∂x jξ
∗
l = δ jl − δn+1∂x jvl(t

[n+1]
2k+2 , x) − δn+1∂x jvl(t

[n+1]
2k+1 , ξ

[n+1]
2k+2 (x, y1)) (5.40)

+ δ2
n+1

d∑
q=1

∂xqvl(t
[n+1]
2k+1 , ξ

[n+1]
2k+2 (x, y1))∂x jvq(t[n+1]

2k+2 , x)

(see (5.30)), whereas for the l-th component ξ[n]
k+1,l(x, y1 + y2) of ξ[n]

k+1(x, y1 + y2), we have

∂x jξ
[n]
k+1,l(x, y1 + y2) = δ jl − 2δn+1∂x jvl(t

[n]
k+1, x). (5.41)

Using relations (5.40) and (5.41) and the hypotheses on the regularity of v(t, x), reasoning similarly to
obtain (5.27), we get

|∂x jZ1| ≤ (1 +Cδn+1) sup
y∈Rd
|w[2,n+1]

i j,2k (y) − w[2,n]
i j,k (y)| +Cδn+1(λτ,n+1(v) + δ1/2

n+1). (5.42)

Notice that for p = 2 and p = 3, we have

∂x jZp = δn+1

∫
Rd

∫
Rd

Θn+1(y1)Θn+1(y2)
d∑

l=1

∂x jζp,l(x, y1, y2)dy1dy2

and for p = 2, we decompose ζ2,l as

ζ2,l = ∂xivl(t
[n]
k+1, x)

(
w[1,n]

l,k (ξ[n]
k+1(x, y1 + y2)) − w[1,n+1]

l,2k (ξ[n]
k+1(x, y1 + y2))

)
+ ∂xivl(t

[n]
k+1, x)

(
w[1,n+1]

l,2k (ξ[n]
k+1(x, y1 + y2)) − w[1,n+1]

l,2k (ξ∗)
)
.

Recall that a similar decomposition of ζ3,l was made in (5.31). By examining the terms in which ζ2,l

and ζ3,l decompose and deriving each term with respect to x j, we can notice, particularly with the help
of (5.30) and (5.40), that the absolute value of the derivative of each term is bounded by

δn+1C

or
λτ,n+1(v)C
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or
C(δn+1 + |y1|)

or
CY [1]

k

or
CY [2]

k ,

where Y [1]
k is the function defined by (5.28), while Y [2]

k is defined by

Y [2]
k =

d∑
l, j=1

sup
x∈Rd
|w[2,n+1]

l j,2k (x) − w[2,n]
l j,k (x)|. (5.43)

Using the properties of the integral of Θn+1 over Rd, we deduce that

|∂x jZ2 + ∂x jZ3| ≤ Cδn+1(λτ,n+1(v) + δ1/2
n+1) + δn+1C(Y [1]

k + Y [2]
k ). (5.44)

Regarding ∂x jZp, p = 4, · · · , 7, applying the considerations used earlier to each term found in the
expression of ∂x jZp, we readily obtain the inequality

|∂x j(Z4 + Z5 + Z6 + Z7)| ≤ Cδn+1(λτ,n+1( f ) + δ1/2
n+1) + δn+1C(Yk + Y [1]

k + Y [2]
k ), (5.45)

where Yk is the function defined by (5.11).
However, we can proceed similarly to the final part of the demonstration in Step 2. That is, by

combining the inequalities (5.42), (5.44), and (5.45), considering that the inequality obtained is valid
for |w[2,n+1]

i j,2k+2(x) − w[2,n]
i j,k+1(x)| for all x ∈ Rd, and summing up the inequality obtained for i = 1, · · · , d, we

obtain
Y [2]

k+1 ≤ Y [2]
k +C(δ2

n+1 + δn+1(λτ,n+1 + δ
1/2
n+1)) + δn+1C(Yk + Y [1]

k + Y [2]
k ). (5.46)

If we set
Ỹ [2]

k = Yk + Y [1]
k + Y [2]

k , (5.47)

then, by combining (5.12), (5.34), and (5.46), we obtain

Ỹ [2]
k+1 ≤ Ỹ [2]

k +C′(δ2
n+1 + δn+1(λτ,n+1 + δ

1/2
n+1)) + δn+1C′Ỹ

[2]
k . (5.48)

Therefore, we obtain
Ỹ [2]

k ≤ (λτ,n+1 + δ
1/2
n+1))etC′ , (5.49)

from which we deduce that the sequence w[1,n]
i j (t, x) = ∂2

∂xi∂x j
u[n](t, x) converges uniformly on [0, τ]×Rd.

Step 4 —Convergence to the limit —
First, let us demonstrate that, given τ > 0, for t[n]

1 ≤ t[n]
k ≤ τ, we have

u[n](t[n]
k , x) − u[n](t[n]

k−1, x)
δn

= −v(t, x) · ∇u[n](t[n]
k−1, x) + ∆u[n](t[n]

k−1, x) + f (t[n]
k−1, x, u

[n](t[n]
k−1, x)) + R (5.50)

with
|R| ≤ (δ2

n + δ
1/2
n )C. (5.51)
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Indeed, according to Taylor’s formula, we have

u[n](t[n]
k−1, x − δnv(t, x) + y) = u[n](t[n]

k−1, x) − δnv(t, x) · ∇u[n](t[n]
k−1, x) + y · ∇u[n](t[n]

k−1, x) (5.52)

+
1
2

d∑
i, j=1

[δ2
nvi(x)v j(t, x) − 2δnvi(t, x)y j + yiy j]

∂2u[n](t[n]
k−1, x)

∂xi∂x j

+
1
6

d∑
i, j,h=1

µiµ jµh
∂3u[n](t[n]

k−1, x̃)
∂xi∂x j∂xh

,

where µi = −δnvi − yi (and similarly for µ j and µh), while x̃ is a point between x and x − δnv(t[n]
k , x) − y.

However, since∫
Rd
Θn(y)y j dy = 0,

∫
Rd
Θn(y)yiy j dy = 0 if i , j,

∫
Rd
Θn(y)y2

i dy = 2δn,

we have ∫
Rd
Θn(y)y · ∇u[n](t[n]

k−1, x)dy = 0,

∫
Rd
Θn(y)

[1
2

d∑
i, j=1

(
δ2

nvi(t, x)v j(t, x) − 2δnvi(t, x)y j + yiy j
)∂2u[n](t[n]

k−1, x)
∂xi∂x j

]
dy

= δn∆u[n](t[n]
k−1, x) + δ2

n
1
2

d∑
i, j=1

vi(t, x)v j(t, x)
∂2u[n](t[n]

k−1, x)
∂xi∂x j

.

On the other hand, since we have |µi| ≤ δn|v| + |y| and similarly for µ j and µh, there exists a constant C
such that ∣∣∣∣∣∣16

3∑
i, j,h=1

µiµ jµh
∂3u[n](t[n]

k−1, x)
∂xi∂x j∂xh

∣∣∣∣∣∣ ≤ C(δn|v| + |y|)3

∣∣∣∣∣∣∂3u[n](t[n]
k−1, x)

∂xi∂x j∂xh

∣∣∣∣∣∣.
Since, according to Lemma 5, the third derivatives of u[n] are uniformly bounded, we have∣∣∣∣∣∣

∫
Rd
Θn(y)

1
6

3∑
i, j,h=1

µiµ jµh
∂3u[n](t[n]

k−1, x)
∂xi∂x j∂xh

dy

∣∣∣∣∣∣ ≤ (δ3
n + δ

3/2
n )C′.

We deduce that

u[n](t[n]
k , x) − u[n](t[n]

k−1, x) = −δnv(t, x) · ∇u[n](t[n]
k−1, x) + δnκ∆u[n](t[n]

k−1, x) + δnF(t[n]
k−1, x, u

[n](t[n]
k−1, x)) + R′

where
|R′| ≤ (δ3

n + δ
3/2
n )C;

therefore, dividing both sides of this equality by δn, we obtain (5.50) with (5.51).
From (5.50), it follows that there exists a constant L independent of n such that

|u[n](t1, x) − u[n](t2, x)| ≤ L|t1 − t2| ∀t1, t2 ∈ [0, τ − 1], ∀x ∈ Rd, (5.53)
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|u(t1, x) − u(t2, x)| ≤ L|t1 − t2| ∀t1, t2 ∈ [0, τ − 1], ∀x ∈ Rd, (5.54)

where u(t, x) is the limit function of the sequence u[n](t, x).
Indeed, according to Lemma 5 and the obvious relation δn ≤ δ1, the absolute value of the right-hand

side of (5.50) is bounded by a constant L that does not depend on n. Therefore, the inequality (5.53)
follows from the definition (2.20). Furthermore, inequality (5.54) results from (5.53) and the uniform
convergence of u[n](t, x) to u(t, x).

Now we are ready to conclude the proof of Theorem 4. Consider the function

ψ[n](t, x) =
t[n]
k+1 − t
δn

(u[n](t[n]
k+1, x) − u[n](t[n]

k , x)
δn

)
(5.55)

+
t − t[n]

k

δn

(u[n](t[n]
k+2, x) − u[n](t[n]

k+1, x)
δn

)
, for t[n]

k < t < t[n]
k+1, k = 0, 1, · · · .

It is immediately evident that ψ[n](t, x) is continuous concerning t, and according to the
definition (2.20), we have

ψ[n](t, x) =
(t[n]

k+1 − t)
δn

∂u[n](t, x)
∂t

+
(t − t[n]

k )
δn

∂u[n](t + δn, x)
∂t

, for t[n]
k < t < t[n]

k+1.

Furthermore, according to relations (5.50) along with (5.51) and definition in (2.20), we have

ψ[n](t, x) = −v(t, x) · ∇u[n](t, x) + ∆u[n](t, x) + f (t, x, u[n](t, x)) + R (5.56)

where
|R| ≤ (δ2

n + δ
1/2
n )C.

Consider now a function φ(·) ∈ C∞([0, ∞[) such that φ(t) = 0 for t ≥ τ1 with τ1 > 0. By multiplying
both sides of (5.56) by the function φ(t) and integrating with respect to t, we obtain∫ ∞

0
ψ[n](t, x)φ(t)dt =

∫ ∞

0
(−v(t, x) · ∇u[n](t, x) + ∆u[n](t, x) + f (t, x, u[n](t, x)) + R)φ(t)dt. (5.57)

By virtue of (5.51) (also refer to (5.56)) and what we have proved in Steps 1, 2, and 3, the right-hand
side of equality (5.57) tends to∫ ∞

0
(−v(t, x) · ∇u(t, x) + ∆u(t, x) + f (t, x, u(t, x)))φ(t)dt.

On the other hand, if we set

Ψ[n](t, x) =
1
2

(u[n](t[n]
0 , x) + u[n](t[n]

1 , x)) +
∫ t

0
ψ[n](t′, x)dt′,

by performing integration by parts, the first term of (5.57) transforms into

−

∫ ∞

0
Ψ[n](t, x)φ′(t)dt −

1
2

(u[n](t[n]
0 , x) + u[n](t[n]

1 , x))φ(0) ≡ I.
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Now, by explicit calculation, we observe that

Ψ[n](t, x) =
1
2

(u[n](t[n]
k , x) + u[n](t[n]

k+1, x)) −
(1
2
−

(t[n]
k+1 − t)2

2δ2
n

)
u[n](t[n]

k , x)

+
(1
2
−

(t[n]
k+1 − t)2

2δ2
n
−

(t − t[n]
k )2

2δ2
n

)
u[n](t[n]

k+1, x) +
(t − t[n]

k )2

2δ2
n

u[n](t[n]
k+2, x)

for t[n]
k < t ≤ t[n]

k+1 and k = 0, 1, 2, · · · . From this expression of Ψ[n](t, x), the uniform convergence of
u[n](t, x) to u(t, x) (Step 1), and the relation (5.53), we can conclude that

Ψ[n](t, x)→ u(t, x) uniformly on [0, τ] × Rd as n→ ∞

for any τ > 0. Furthermore, as u[n](t[n]
0 , x) = u0(x) for all n and for all x ∈ Rd, considering (5.53), we

have
1
2

(u[n](t[n]
0 , x) + u[n](t[n]

1 , x))→ u0(x) uniformly on Rd as n→ ∞.

Therefore, I tends toward

−

∫ ∞

0
u(t, x)φ′(t)dt − u0(x)φ(0),

which gives us (4.12). The proof of Theorem 4 is complete. □

6. Proof of Theorem 1

Proof. As t(s) is the inverse function of s(t), by virtue of (2.6), we have

dt(s)
ds
=

1
ds(t)

dt

=
1
κ(t)

.

We thus obtain
∂su(t(s), x) =

1
κ(t)

∂tu(t, x),

allowing us to transform Eq (2.1) into

∂su(t(s), x) +
1

κ(t(s))
v(t(s), x) · ∇u(t(s), x) = ∆u(t(s), x) +

1
κ(t(s))

f (t(s), x, u(t(s), x)). (6.1)

If we set
ṽ(s, x) =

1
κ(t(s))

v(t(s), x), f̃ (s, x, u) =
1

κ(t(s))
f (t(s), x, u),

according to hypotheses (2.12)–(2.15), the functions ṽ(s, x) and f̃ (s, x, u) satisfy the conditions (4.3)–
(4.6) by replacing t with s. Therefore, following Theorem 4, the functions u[n](s, x) defined by (4.9)–
(4.11), where s substitutes t, converge uniformly on [0, τ]×Rd for any τ > 0, with their first and second
derivatives, to a function u(s, x). The limit function u(s, x) satisfies equation (4.1) (with s replacing t)
and the initial condition (2.2) in terms of integral equality

−

∫ ∞

0
u(s, x)

d
ds
φ̃(s)ds − u0(x)φ̃(0) +

∫ ∞

0
ṽ(s, x) · ∇u(s, x)φ̃(s)ds (6.2)
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=

∫ ∞

0
(∆u(s, x) + f̃ (s, x, u))φ̃(s)ds

for any φ̃(·) ∈ C1([0, ∞[) such that φ̃(s) = 0 for s ≥ τ1,s with τ1,s > 0.
Now, let us consider a function φ(·) ∈ C1([0,∞[) with supp(φ(·)) ⊂ [0, τ1,t] and its composition

φ ◦ t = φ(t(·)) with the function t(s). Then we have

d
ds
φ(t(s)) =

d
dt
φ(t)

∣∣∣∣∣
t=t(s)
·

dt(s)
ds
=

d
dt
φ(t)

∣∣∣∣∣
t=t(s)
·

1
κ(t(s))

.

Since t(s) is continuous and d
dtφ(t) is also continuous by assumption, the function d

dtφ(t)
∣∣∣
t=t(s)

is
continuous in s. On the other hand, according to condition (2.4), the function t(s) is absolutely
continuous, so that dt(s)

ds belongs to L1
loc([0,∞[). Consequently,

d
ds
φ(t(s)) ∈ L1(]0, s(τ1,t) + 1[).

Hence, there exists a sequence of functions {φ̃m}
∞
m=1 such that

φ̃m ∈ C1(R+), supp(φ̃m) ⊂ [0, s(τ1,t) + 1] ∀m ∈ N\{0}, (6.3)

and that
∥φ̃m(·) − φ(t(·))

∥∥∥
W1

1 (]0,s(τ1,t)+1[)
→ 0, |φ̃m(s) − φ(0)| → 0, for m→ ∞. (6.4)

According to (6.3), we can substitute φ̃(s) = φ̃m(s) into (6.2). Since u ∈ L∞([0, τ] × Rd) for any
τ > 0, considering (6.4), we have∫ ∞

0
u(s, x)

d
ds
φ̃m(s)ds→

∫ ∞

0
u(s, x)

d
ds
φ(t(s))ds =

∫ ∞

0
u(t, x)

d
dt
φ(t)dt

as m→ ∞. Moreover, it can be easily seen that∫ ∞

0
ṽ(s, x) · ∇u(s, x)φ̃m(s)ds→

∫ ∞

0

1
κ(t(s))

v(t(s), x) · ∇u(t(s), x)φ(s)ds =
∫ ∞

0
v(t, x) · ∇u(t, x)φ(t)dt,

∫ ∞

0
∆u(s, x)φ̃m(s)ds→

∫ ∞

0
∆u(t(s), x)φ(s)ds =

∫ ∞

0
κ(t)∆u(t, x)φ(t)dt,∫ ∞

0
f̃ (s, x, u)φ̃m(s)ds→

∫ ∞

0

1
κ(t(s))

f (t(s), x, u)φ(s)ds =
∫ ∞

0
f (t, x, u)φ(t)dt

as m → ∞. Hence, it follows that for any function φ(t) ∈ C1(R+) such that there exists a positive
number τ1,t satisfying φ(t) = 0 for all t ≥ τ1,t, it satisfies the relation (2.21). The theorem is proved. □
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