This paper investigated the total positivity of Gramian matrices associated with general bases of functions. It demonstrated that the total positivity of collocation matrices for totally positive bases extends to their Gramian matrices. Additionally, a bidiagonal decomposition of these Gramian matrices, derived from integrals of symmetric functions, was presented. This decomposition enables the design of algorithms with high relative accuracy for solving linear algebra problems involving totally positive Gramian matrices. For polynomial bases, compact and explicit formulas for the bidiagonal decomposition were provided, involving integrals of Schur polynomials. These integrals, known as Selberg-like integrals, arise naturally in various contexts within Physics and Mathematics.
Citation: Pablo Díaz, Esmeralda Mainar, Beatriz Rubio. Total positivity, Gramian matrices, and Schur polynomials[J]. AIMS Mathematics, 2025, 10(2): 2375-2391. doi: 10.3934/math.2025110
This paper investigated the total positivity of Gramian matrices associated with general bases of functions. It demonstrated that the total positivity of collocation matrices for totally positive bases extends to their Gramian matrices. Additionally, a bidiagonal decomposition of these Gramian matrices, derived from integrals of symmetric functions, was presented. This decomposition enables the design of algorithms with high relative accuracy for solving linear algebra problems involving totally positive Gramian matrices. For polynomial bases, compact and explicit formulas for the bidiagonal decomposition were provided, involving integrals of Schur polynomials. These integrals, known as Selberg-like integrals, arise naturally in various contexts within Physics and Mathematics.
[1] |
T. Ando, Totally positive matrices, Linear Algebra Appl., 90 (1987), 165–219. https://doi.org/10.1016/0024-3795(87)90313-2 doi: 10.1016/0024-3795(87)90313-2
![]() |
[2] |
J. Delgado, H. Orera, J. M. Peña, Accurate computations with Laguerre matrices, Numer. Linear Algebra Appl., 26 (2019), e2217. https://doi.org/10.1002/nla.2217 doi: 10.1002/nla.2217
![]() |
[3] |
J. Delgado, H. Orera, J. M. Peña, Accurate algorithms for Bessel matrices, J. Sci. Comput., 80 (2019), 1264–1278. https://doi.org/10.1007/s10915-019-00975-6 doi: 10.1007/s10915-019-00975-6
![]() |
[4] |
J. Delgado, J. M. Peña, Accurate computations with collocation matrices of rational bases, Appl. Math. Comput., 219 (2013), 4354–4364. https://doi.org/10.1016/j.amc.2012.10.019 doi: 10.1016/j.amc.2012.10.019
![]() |
[5] |
J. Demmel, P. Koev, The accurate and efficient solution of a totally positive generalized Vandermonde linear system, SIAM J. Matrix Anal. Appl., 27 (2005), 42–52. https://doi.org/10.1137/S0895479804440335 doi: 10.1137/S0895479804440335
![]() |
[6] |
H. Diao, H. Liu, L. Tao, Stable determination of an impedance obstacle by a single far-field measurement, Inverse Probl., 40 (2024), 055005. https://doi.org/10.1088/1361-6420/ad3087 doi: 10.1088/1361-6420/ad3087
![]() |
[7] |
P. Díaz, E. Mainar, B. Rubio, Polynomial total positivity and high relative accuracy through Schur polynomials, J. Sci. Comput., 97 (2023), 10. https://doi.org/10.1007/s10915-023-02323-1 doi: 10.1007/s10915-023-02323-1
![]() |
[8] |
P. Díaz, E. Mainar, B. Rubio, Totally positive wronskian matrices and symmetric functions, Axioms, 13 (2024), 589. https://doi.org/10.3390/axioms13090589 doi: 10.3390/axioms13090589
![]() |
[9] | S. M. Fallat, C. R. Johnson, Totally nonnegative matrices, Princeton: Princeton University Press, 2011. https://doi.org/10.1515/9781400839018 |
[10] |
M. Gasca, J. M. Peña, A matricial description of Neville elimination with applications to total positivity, Linear Algebra Appl., 202 (1994), 33–53. https://doi.org/10.1016/0024-3795(94)90183-X doi: 10.1016/0024-3795(94)90183-X
![]() |
[11] | M. Gasca, J. M. Peña, On factorizations of totally positive matrices, In: Total positivity and its applications, Dordrecht: Springer, 359 (1996), 109–130. https://doi.org/10.1007/978-94-015-8674-0_7 |
[12] | L. K. Hua, Harmonic analysis of functions of several complex variables in the complex domains, In: Translations of mathematical monographs, Providence: American Mathematical Society, 6 (1963). |
[13] | K. W. J. Kadell, An integral for the product of two Selberg-Jack symmetric polynomials, Compositio Math., 87 (1993), 5–43. |
[14] |
K. W. J. Kadell, The Selberg-Jack symmetric functions, Adv. Math., 130 (1997), 33–102. https://doi.org/10.1006/aima.1997.1642 doi: 10.1006/aima.1997.1642
![]() |
[15] |
P. Koev, Accurate computations with totally nonnegative matrices, SIAM J. Matrix Anal. Appl., 29 (2007), 731–751. https://doi.org/10.1137/04061903X doi: 10.1137/04061903X
![]() |
[16] |
E. Mainar, J. M. Peña, B. Rubio, Accurate computations with matrices related to bases $\{t^i e^{\lambda t} \}$, Adv. Comput. Math., 48 (2022), 38. https://doi.org/10.1007/s10444-022-09954-2 doi: 10.1007/s10444-022-09954-2
![]() |
[17] |
E. Mainar, J. M. Peña, B. Rubio, Total positivity and accurate computations with Gram matrices of Bernstein bases, Numer. Algor., 91 (2022), 841–859. https://doi.org/10.1007/s11075-022-01284-0 doi: 10.1007/s11075-022-01284-0
![]() |
[18] |
E. Mainar, J. M. Peña, B. Rubio, Total positivity and accurate computations with Gram matrices of Said-Ball bases, Numer. Linear Algebra Appl., 30 (2023), e2521. https://doi.org/10.1002/nla.2521 doi: 10.1002/nla.2521
![]() |
[19] |
A. Marco, J. J. Martínez, A fast and accurate algorithm for solving Bernstein-Vandermonde linear systems, Linear Algebra Appl., 422 (2007), 616–628. https://doi.org/10.1016/j.laa.2006.11.020 doi: 10.1016/j.laa.2006.11.020
![]() |
[20] |
A. Marco, J. J. Martínez, Accurate computations with Said-Ball-Vandermonde matrices, Linear Algebra Appl., 432 (2010), 2894–2908. https://doi.org/10.1016/j.laa.2009.12.034 doi: 10.1016/j.laa.2009.12.034
![]() |
[21] |
A. Marco, J. J. Martínez, Accurate computations with totally positive Bernstein-Vandermonde matrices, Electron. J. Linear Algebra, 26 (2013), 357–380. https://doi.org/10.13001/1081-3810.1658 doi: 10.13001/1081-3810.1658
![]() |
[22] |
A. Marco, J. J. Martínez, J. M. Peña, Accurate bidiagonal decomposition of totally positive Cauchy Vandermonde matrices and applications, Linear Algebra Appl., 517 (2017), 63–84. https://doi.org/10.1016/j.laa.2016.12.003 doi: 10.1016/j.laa.2016.12.003
![]() |
[23] |
A. Marco, J. J. Martínez, R. Viaña, Total positivity and least squares problems in the Lagrange basis, Numer. Linear Algebra Appl., 31 (2024), e2554. https://doi.org/10.1002/nla.2554 doi: 10.1002/nla.2554
![]() |
[24] |
H. Narayanan, On the complexity of computing Kostka numbers and Littlewood-Richardson coefficients, J. Algebr. Comb., 24 (2006), 347–354. https://doi.org/10.1007/s10801-006-0008-5 doi: 10.1007/s10801-006-0008-5
![]() |
[25] | A. Pinkus, Totally positive matrices, In: Cambridge tracts in mathematics, Cambridge: Cambridge University Press, 181 (2010). https://doi.org/10.1017/CBO9780511691713 |
[26] |
Z. Yang, X. X. Ma, Computing eigenvalues of quasi-rational Bernstein-vandermonde matrices to high relative accuracy, Numer. Linear Algebra Appl., 29 (2022), e2421. https://doi.org/10.1002/nla.2421 doi: 10.1002/nla.2421
![]() |