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1. Introduction

Traditionally, a matrix is defined as totally positive (TP) if all its minors are nonnegative, and
strictly totally positive (STP) if all its minors are strictly positive (see [1, 11, 25]). It is worth noting
that in some literature, TP and STP matrices are referred to as totally nonnegative and totally positive
matrices, respectively [9]. A fundamental property of TP matrices is that their product also results in a
TP matrix.

A basis (u0, . . . ,un) of a given space U of functions defined on I ⊆ R is said to be totally positive
(TP) if, for any sequence of parameters T := (t1, . . . , tN+1) in I with t1 < · · · < tN+1 and N ≥ n, the
collocation matrix

MT :=
(
u j−1(ti)

)
1≤i≤N+1;1≤ j≤n+1 (1.1)

is TP.
Collocation matrices form a significant class of structured matrices, which has become a prominent

research topic in numerical linear algebra, attracting increasing attention in recent years. Extensive
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studies have focused on algebraic computations for various types of collocation matrices associated
with specific bases of polynomials [2, 3, 7, 19–23], rational bases [4, 26], or bases of functions of the
form tkeλ t [16], among others. Once recognized as TP matrices, collocation matrices have found
diverse and interesting applications in numerical mathematics, computer-aided geometric design, and
statistics.

If U is a Hilbert space of functions equipped with an inner product ⟨·, ·⟩, and (u0, . . . ,un) is a basis of
U , the corresponding Gram (or Gramian) matrix is the symmetric matrix G =

(
gi, j

)
1≤i, j≤n+1 defined

as
gi, j :=

〈
ui−1,u j−1

〉
, 1 ≤ i, j ≤ n+1. (1.2)

Gramian matrices have a wide range of applications. For example, they can be used to transform
non-orthogonal bases of U into orthogonal ones, with the Gramian matrix defined in (1.2) serving
as the transformation matrix. In least-squares approximation, where a function is represented as a
linear combination of a basis in U , the solution involves solving a system of normal equations. The
coefficient matrix for this system is precisely the Gramian matrix (1.2) corresponding to the chosen
basis. Furthermore, Gramian matrices are also linked to inverse scattering problems [6], highlighting
their significance in applied mathematics and physics.

For certain polynomial bases [18] and bases of the form tkeλ t [16], these matrices have been
efficiently represented through bidiagonal factorizations. These factorizations facilitate the design of
highly accurate algorithms for addressing key problems in linear algebra.

As shown in [10, 11], any nonsingular TP matrix A ∈ R(n+1)×(n+1) can be expressed as

A = FnFn−1 · · ·F1DG1G2 · · ·Gn, (1.3)

where Fi ∈ R(n+1)×(n+1) (respectively, Gi ∈ R(n+1)×(n+1)) for i = 1, . . . ,n are TP lower (respectively,
upper) triangular bidiagonal matrices of the form:

Fi =



1
. . .

1
mi+1,1 1

. . .
. . .

mn+1,n+1−i 1


, GT

i =



1
. . .

1
m̃i+1,1 1

. . .
. . .

m̃n+1,n+1−i 1


,

and D = diag(pi,i)1≤i≤n+1 is a nonsingular diagonal matrix whose nonzero diagonal entries are called
pivots. The off-diagonal entries mi, j, known as multipliers, satisfy

mi, j =
pi, j

pi−1, j
,

with pi,1 := ai,1, 1 ≤ i ≤ n+1, and

pi, j :=
detA[i− j+1, . . . , i | 1, . . . , j]

detA[i− j+1, . . . , i−1 | 1, . . . , j−1]
, (1.4)

for 1 < j ≤ i ≤ n+ 1, where the submatrix of A formed by rows i1, . . . , ir and columns j1, . . . , js is
denoted by A[i1, . . . , ir | j1, . . . , js] and A[i1, . . . , ir] denotes the matrix A[i1, . . . , ir | i1, . . . , ir].
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Similarly, the entries m̃i, j are given by

m̃i, j =
p̃i, j

p̃i−1, j
, (1.5)

where p̃i,1 := a1,i, and the terms p̃i, j can be computed as in (1.4) for the transpose AT of the matrix A.
For symmetric matrices, it holds that mi, j = m̃i, j, which implies Gi = FT

i for i = 1, . . . ,n.
The factorization (1.3) offers an explicit expression for the determinant of TP matrices.

Furthermore, when its computation avoids inaccurate cancellations, it provides a matrix representation
suitable for developing algorithms with high relative accuracy (HRA) to address relevant algebraic
problems (cf. [15, 16]). Achieving HRA is crucial, as such algorithms ensure that relative errors
are on the order of machine precision and remain unaffected by the matrix dimension or condition
number. Outstanding results have been obtained for collocation matrices (see [2–5, 19–22]) as well as
for Gramian matrices of bases such as the Poisson and Bernstein bases on the interval [0,1]. Similarly,
significant progress has been made with non-polynomial bases like {xkeλx} (see [17], and [16]).

A symmetric function is a function in several variables which remains unchanged for any
permutation of its variables. In contrast, a totally antisymmetric function changes sign with
any transposition of its variables. If MT is a collocation matrix defined as in (1.1), any minor
detMT [i1, . . . , ir| j1, . . . , js] is a totally antisymmetric function of the parameters ti1 , . . . , tir . The same
applies to the minors of the transpose of MT . These statements may be concisely expressed through
the following relations:

detMT [i1, . . . , ir| j1, . . . , jr] = g(ti1, . . . , tir)detVti1 ,...,tir
,

detMT
T [i1, . . . , ir| j1, . . . , jr] = g̃(t j1, . . . , t jr)detVt j1 ,...,t jr

,

for suitable symmetric functions g(x1, . . . ,xr), g̃(x1, . . . ,xr), and Vt j1 ,...,t jr
, the Vandermonde matrix at

nodes t j1, . . . , t jr .
The above observation, together with formula (1.4) for computing the pivots and multipliers of

the factorization (1.3), reveals an intriguing connection between symmetric functions and TP bases,
previously explored in [7] and [8]. For collocation matrices of polynomial bases, the diagonal pivots
and multipliers involved in (1.3) can be expressed in terms of Schur functions, leading to novel insights
into the total positivity properties (cf. [7]). Subsequently, [8] extended these results to the class of
Wronskian matrices, also deriving their bidiagonal decomposition in terms of symmetric functions.

In this paper, we extend this line of research by considering Gramian matrices (1.2). Due to their
inherent symmetry (see (1.4) and (1.5)), computing the pivots and multipliers in the factorization (1.3)
reduces to determining minors with consecutive rows and initial consecutive columns, specifically:

detG[i− j+1, . . . , i|1, . . . , j], 1 ≤ j ≤ i ≤ n+1. (1.6)

These minors will be central objects of study in this work. Moreover, it will be shown that Gramian
matrices can be represented as a specific limit of products of matrices involving collocation matrices of
the given basis (see formula (2.2) in Section 2). This framework enables us to derive results analogous
to those obtained in [7] for collocation matrices, or in [8] for Wronskian matrices now in the context
of Gramian matrices. Ultimately, we establish a connection between the total positivity of Gramian
matrices and integrals of symmetric functions.
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In the following sections, we first demonstrate that any Gramian matrix for a given basis can be
written as a limit of products involving the collocation matrices of the system. Consequently, we
establish that Gramian matrices of TP bases are themselves TP. These findings are applied in Section 3,
where we represent any minor (1.6) as an integral of products of minors of collocation matrices. In
Section 4, we further refine this representation for polynomial bases, expressing the minors in terms of
integrals of Schur polynomials. These integrals, known as Selberg-like integrals, have been explicitly
computed in the literature and arise naturally in various contexts of Physics and Mathematics, such as
the quantum Hall effect and random matrix theory. Relevant results on these integrals, essential for
our purposes, are summarized in Section 5. Finally, we include an appendix providing the pseudocode
of an algorithm designed for the computation of the determinants in (1.6), specifically tailored for
polynomial bases.

2. Gramian matrices of totally positive bases

Consider U to be a Hilbert space of functions defined on J = [a,b], equipped with the inner product

⟨u,v⟩ :=
∫

J
κ(t)u(t)v(t)dt, (2.1)

for a weight function κ satisfying κ(t)≥ 0, for all t ∈ J. In this section, we focus on the Gramian matrix
G, as defined in (1.2), corresponding to a basis (u0, . . . ,un) of U with respect to the inner product (2.1).

The following result shows that G can be represented as the limit of products involving collocation
matrices for (u0, . . . ,un) evaluated at equally spaced sequences of parameters on [a,b] and diagonal
matrices containing the values of the weight function κ at those parameters.

Lemma 2.1. Let G be the Gramian matrix (1.2) of a basis (u0, . . . ,un) with respect to the inner
product (2.1). Then,

G = lim
N→∞

b−a
N

UT
N KNUN , (2.2)

where
UN := (u j−1(ti))i=1,...,N+1, j=1,...,n+1, KN := diag

(
κ(ti)

)
i=1,...,N+1, (2.3)

and ti := a+(i−1)(b−a)/N, i = 1, . . . ,N +1, for N ∈ N.

Proof. Using the definition of the Riemann integral, it is straightforward to verify that the matrix

GN :=
b−a

N
UT

N KNUN (2.4)

converges component-wise to the Gramian matrix G as N → ∞. □

Using Lemma 2.1, we establish the total positivity property of Gramian matrices corresponding to
TP bases under the inner product (2.1).

Theorem 2.1. Let (u0, . . . ,un) be a TP basis of a space U of functions defined on the interval I. The
Gramian matrix G, as defined in (1.2), is TP if J ⊆ I.
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Proof. Let us consider the compact interval J = [a,b]. If (u0, . . . ,un) is a TP basis on I, it remains TP
on J ⊆ I. Consequently, the matrices UN and KN defined in (2.3) are TP for all N ∈ N. Therefore, the
matrix GN in (2.4) is TP for all N ∈ N, as it is the product of TP matrices.

Let us analyze the sign of the r× r minor detG[i1, . . . , ir| j1, . . . , jr] corresponding to rows 1 ≤ i1 <
· · · < ir ≤ n+1 and columns 1 ≤ j1 < · · · < jr ≤ n+1. Since GN = (GN

i, j)1≤i≤n+1;1≤ j≤n+1 is TP, we
have

0 ≤ detGN [i1, . . . , ir| j1, . . . , jr] = ∑
σ∈Sr

sgn(σ) GN
i1 jσ(1)

· · ·GN
ir jσ(r)

, N ∈ N, (2.5)

where Sr denotes the group of permutations of {1, . . . ,r} and sgn(σ) is the signature of the permutation
σ , taking the value 1 if σ is even and −1 if σ is odd. Recall that a permutation is even (or odd) if it
can be expressed as the product of an even (or odd) number of transpositions.

From (2.2), we have limN→∞ GN
i, j = Gi, j and so,

GN
i, j = Gi, j + ε

N
i, j, lim

N→∞
ε

N
i, j = 0, (2.6)

for 1 ≤ i, j ≤ n+1. Using (2.5) and (2.6), we derive

0 ≤ detGN [i1, . . . , ir| j1, . . . , jr] = ∑
σ∈Sr

sgn(σ)
r

∏
ℓ=1

(Giℓ, jσ(ℓ)
+ ε

N
iℓ, jσ(ℓ)

)

= detG[i1, . . . , ir| j1, . . . , jr]+
r

∑
k=1

∑
σ∈Sr

sgn(σ)εN
ik, jσ(k) ∏

ℓ,k
GN

iℓ, jσ(ℓ)

≤ detG[i1, . . . , ir| j1, . . . , jr]+
r

∑
k=1

∑
σ∈Sr

|εN
ik, jσ(k)

|∏
ℓ,k

|GN
iℓ, jσ(ℓ)

|, N ∈ N.

By defining

εN := max{|εN
i, j| | i = i1, . . . , ir, j = j1, . . . , jr}, ψN := max{|GN

i, j| | i = i1, . . . , ir, j = j1, . . . , jr},

we have

0 ≤ detG[i1, . . . , ir| j1, . . . , jr]+
r

∑
k=1

∑
σ∈Sr

εNψ
r−1
N = detG[i1, . . . , ir| j1, . . . , jr]+ r · r!εNψ

r−1
N , N ∈ N.

The value ψN is clearly bounded and εN → 0 as N → ∞. So,

0 = lim
N→∞

−r · r!εNψ
r−1
N ≤ detG[i1, . . . , ir| j1, . . . , jr].

Finally, since any r× r minor of G is nonnegative, we conclude that G is a TP matrix. □

3. Bidiagonal factorizations of Gramian matrices

In this section, we use formula (2.2) to write the determinants in (1.6) as integrals involving the
product of minors of specific collocation matrices associated with the considered basis.

Before presenting the main result of the section, we first prove the following auxiliary lemma on
the integrals of general symmetric functions.
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Proposition 3.1. Let g(x1, . . . ,x j) be a symmetric function. Then∫ b

a
dx1

∫ b

x1

dx2 · · ·
∫ b

x j−1

dx j g(x1, . . . ,x j) =
1
j!

∫
[a,b] j

j

∏
l=1

dxl g(x1, . . . ,x j). (3.1)

Proof. The integration region of the LHS of (3.1) covers all the points (x1, . . . ,x j) of the hypercube
[a,b] j such that a ≤ x1 ≤ ·· · ≤ x j ≤ b. On the other hand, the hypercube is fully covered when
considering all the points obtained by permuting the variables, that is,

[a,b] j = ∪σ∈S j{xσ = (xσ(1), . . . ,xσ( j))|a ≤ x1 ≤ ·· · ≤ x j ≤ b}.

Two points xσ and xσ ′ , with σ , σ ′, can be equal only if two or more variables take the same value,
say xi = x j. So, only points lying on a face of a simplex are in the intersection set. But the collection
of these points forms a set of null measure. Thus the integral over [a,b] j can split into j! integrals,
each corresponding to a region labeled by a permutation σ ∈ S j. Moreover, since g(x1, . . . ,x j) is a
symmetric function, the permutation of variables does not alter the value of the integral. So, all the j!
integrals are identical and (3.1) follows. □

Theorem 3.1. Let G be the Gramian matrix (1.2) of a basis (u0, . . . ,un) with respect to the inner
product (2.1). Then

detG[i− j+1, . . . , i|1, . . . , j] =
1
j!

∫
[a,b] j

j

∏
l=1

dxlκ(xl)detMT
X [i− j+1, . . . , i|1, . . . , j]detMX [1, . . . , j],

(3.2)
where

MX :=
(
u j−1(xi)

)
1≤i, j≤n+1

is the square collocation matrix of (u0, . . . ,un) at the sequence of parameters X = (x1, . . . ,xn+1).

Proof. Given N ∈ N, we define an equally spaced partition of [a,b] with ti := a+(i− 1)(b− a)/N,
i = 1, . . . ,N +1. Using basic properties of determinants, we can derive the following identities for the
matrix GN in (2.4):

detGN [i− j+1, . . . , i|1, . . . , j]

=

(
b−a

N

) j

∣∣∣∣∣∣∣∣∣
∑

N+1
l=1 ui− j+1(tl)u0(tl)κ(tl) . . . ∑

N+1
l=1 ui− j+1(tl)u j−1(tl)κ(tl)

...
. . .

...

∑
N+1
l=1 ui(tl)u0(tl)κ(tl) . . . ∑

N+1
l=1 ui(tl)u j−1(tl)κ(tl)

∣∣∣∣∣∣∣∣∣
=

(
b−a

N

) j N+1

∑
k1,...,k j=1

j

∏
l=1

ul−1(tkl)κ(tkl)

∣∣∣∣∣∣∣∣∣
ui− j+1(tk1) . . . ui− j+1(tk j)

...
. . .

...

ui(tk1) . . . ui(tk j)

∣∣∣∣∣∣∣∣∣
=

(
b−a

N

) j

∑
k1<···<k j

∑
σ∈S j

j

∏
l=1

ul−1(tkσ(l)
)κ(tkσ(l)

)

∣∣∣∣∣∣∣∣∣
ui− j+1(tkσ(1)

) . . . ui− j+1(tkσ( j)
)

...
. . .

...

ui(tkσ(1)
) . . . ui(tkσ( j)

)

∣∣∣∣∣∣∣∣∣ . (3.3)
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In the last line in (3.3), we have taken into account that the determinant cancels whenever two of
the dummy variables (k1, . . . ,k j) take the same value and so, the total sum can be reorganized into
ascending sequences and permutations of the variables (k1, . . . ,k j). Next, we can sum over the
permutation group S j, and obtain

detGN [i− j+1, . . . , i|1, . . . , j]

=

(
b−a

N

) j

∑
k1<···<k j

∑
σ∈S j

sgn(σ)
j

∏
l=1

ul−1(tkσ(l)
)κ(tkl)

∣∣∣∣∣∣∣∣∣
ui− j+1(tk1) . . . ui− j+1(tk j)

...
. . .

...

ui(tk1) . . . ui(tk j)

∣∣∣∣∣∣∣∣∣
=

(
b−a

N

) j

∑
k1<···<k j

j

∏
l=1

κ(tkl)

∣∣∣∣∣∣∣∣∣
ui− j+1(tk1) . . . ui− j+1(tk j)

...
. . .

...

ui(tk1) . . . ui(tk j)

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
u1(tk1) . . . u j(tk1)

...
. . .

...

u1(tk j) . . . u j(tk j)

∣∣∣∣∣∣∣∣∣ .

In general, for any integrable function g(x1, . . . ,x j) defined on [a,b] j, we have

lim
N→∞

∑
k1<···<k j

(
b−a

N

) j

g(tk1, . . . , tk j) =
∫ b

a
dx1

∫ b

x1

dx2 · · ·
∫ b

x j−1

dx j g(x1, . . . ,x j).

Thus,

detG[i− j+1, . . . , i|1, . . . , j] = lim
N→∞

detGN [i− j+1, . . . , i|1, . . . , j]

=
∫ b

a
dx1

∫ b

x1

dx2 · · ·
∫ b

x j−1

dx j

j

∏
l=1

κ(xl)detMT
X [i− j+1, . . . , i|1, . . . , j]detMX [1, . . . , j]

=
1
j!

∫
[a,b] j

j

∏
l=1

dxlκ(xl)detMT
X [i− j+1, . . . , i|1, . . . , j]detMX [1, . . . , j], (3.4)

where, in the last step of (3.4), we were able to use Proposition 3.1 since the integrand is always a
symmetric function in its variables (x1, . . . ,x j). □

Theorem 3.1 exhibits an explicit connection between Gramian matrices and collocation matrices.
Namely, it shows the relation between the determinants (1.6) and the analogous minors of the
collocation matrices that can be constructed within the range of integration. Two comments about
Theorem 3.1 are in order. First, it serves as a consistency check of Theorem 2.1, since the integral
of the product of positive minors and a positive definite function κ is always positive. Thus, the total
positivity of a basis (u0, . . . ,un) translates into the total positivity of G. Second, since the integrand
of (3.4) is a symmetric function, the pivots and multipliers of the bidiagonal decomposition of the
Gramian matrix associated to a TP basis can be expressed in terms of integrals of symmetric functions.
In the following section, we will flesh out the last statement in the case of polynomial bases, for which
the integrand is an explicit linear combination of Schur polynomials.
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4. Bidiagonal factorization of Gramian matrices of polynomial bases

Given a partition λ := (λ1,λ2, . . . ,λp) of size |λ | := λ1+λ2+ · · ·+λp and length l(λ ) := p, where
λ1 ≥ λ2 ≥ ·· · ≥ λp > 0, Jacobi’s definition of the corresponding Schur polynomial in n+ 1 variables
is expressed via Weyl’s formula as:

sλ (t1, t2, . . . , tn+1) := det



tλ1+n
1 tλ1+n

2 . . . tλ1+n
n+1

tλ2+n−1
1 tλ2+n−1

2 . . . tλ2+n−1
n+1

...
...

. . .
...

tλn+1
1 tλn+1

2 . . . tλn+1
n+1


/det


1 1 . . . 1

t1 t2 . . . tn+1

...
...

. . .
...

tn
1 tn

2 . . . tn
n+1

 . (4.1)

By convention, the Schur polynomial associated with the empty partition is defined as
s /0(t1, . . . , tn+1) := 1. This serves as the multiplicative identity in the algebra of symmetric functions.
When considering all possible partitions, Schur polynomials form a basis for the space of symmetric
functions, allowing any symmetric function to be uniquely expressed as a linear combination of Schur
polynomials.

Let Pn(I) denote the space of polynomials of degree at most n defined on I ⊆ R, and let (p0, . . . , pn)
be a basis of Pn(I) such that

pi−1(t) =
n+1

∑
j=1

ai, jt j−1, t ∈ I, i = 1, . . . ,n+1. (4.2)

We denote by A = (ai, j)1≤i, j≤n+1 the matrix representing the linear transformation from the basis
(p0, . . . , pn) to the monomial polynomial basis of Pn(I). Specifically,

(p0, . . . , pn)
T = A(m0, . . . ,mn)

T , (4.3)

where (m0, . . . ,mn) denotes the monomial basis.
Let MT be the collocation matrix of (p0, . . . , pn) at T := (t1, . . . , tn+1) on I with t1 < · · · < tn+1,

defined as
MT :=

(
p j−1(ti)

)
1≤i, j≤n+1. (4.4)

The collocation matrix of the monomial polynomial basis (m0, . . . ,mn) at T corresponds to the
Vandermonde matrix VT at the chosen nodes:

VT :=
(
t j−1
i

)
1≤i, j≤n+1.

In [7], it was shown how to express the bidiagonal factorization (1.3) of M := MT in terms of Schur
polynomials and some minors of the change of basis matrix A satisfying (4.3). For this purpose, it was
shown that

detM[i− j+1, . . . , i |1, . . . , j] = detVti− j+1,...,ti ∑
l1>···>l j

detA[1,..., j | l j,...,l1]s(l1− j,...,l j−1)(ti− j+1, . . . , ti).

(4.5)
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To effectively apply the product rules of Schur polynomials, we express the linear combination
in (4.5) using partitions. Consider partitions λ = (λ1, . . . ,λ j), where λr = lr +r− j−1 for r = 1, . . . , j.
Given that l1 > · · ·> l j, λ is a well-defined partition. For the minors of matrix A, we use the following
notation:

A[i,λ ] := detA[i− j+1, . . . , i | l j, . . . , l1] = detA[i− j+1, . . . , i |λ j +1, . . . ,λ1 + j]. (4.6)

Since the indices satisfy l1 > · · · > l j and lk ≤ n+ 1, for 1 ≤ k ≤ n+ 1, the corresponding partitions
will have j parts, each with a maximum length of n+1− j. In other words, the sum in (4.5) spans all
Young diagrams that fit within a j× (n+1− j) rectangular box, which can be expressed as:

l(λ )≤ j, λ1 ≤ n+1− j.

With this notation, we have

∑
l j<···<l1

detA[1,..., j | l j,...,l1] s(l1− j,...,l j−1)(ti− j+1, . . . , ti) = ∑
l(λ )≤ j

λ1≤n+1− j

A[ j,λ ] sλ (ti− j+1, . . . , ti). (4.7)

The derived formula (4.5) for the minors of the collocation matrices MT of polynomial bases
in terms of Schur polynomials, combined with known properties of these symmetric functions,
facilitates a comprehensive characterization of total positivity on unbounded intervals for significant
polynomial bases (p0, . . . , pn) (cf. [7]). Furthermore, considering Eqs (4.5) and (1.4), the bidiagonal
factorization (1.3) of Mt1,...,tn+1 was obtained, enhancing high relative accuracy (HRA) computations in
algebraic problems involving these matrices.

Equation (3.2) applies to a general basis of functions (u0, . . . ,un). For polynomial bases, fully
characterized by the transformation matrix A via (4.3), explicit formulas for the minors (1.6) can be
derived in terms of Schur polynomials. In this context, it is important to recall the role of Littlewood-
Richardson numbers, denoted cν

λ ,µ , which describe the coefficients in the expansion of the product of
two Schur polynomials. Specifically, given Schur polynomials sλ and sµ associated with partitions λ

and µ , their product can be expressed as:

sλ (x1, . . . ,x j) · sµ(x1, . . . ,x j) = ∑
ρ

cρ

λ µ
sρ(x1, . . . ,x j). (4.8)

The following result provides a compact formula for the minors detG[i − j + 1, . . . , i |1, . . . , j],
representing a significant contribution of this paper.

Theorem 4.1. Let G be the Gramian matrix of a basis (p0, . . . , pn) of Pn(J) with respect to an inner
product (2.1). Let A be the matrix of the linear transformation satisfying (4.3). Then

detG[i− j+1, . . . , i|1, . . . , j] = ∑
l(λ )≤ j

λ1≤n+1− j

∑
l(µ)≤ j

µ1≤n+1− j

∑
|ρ|=|λ |+|µ|

A[ j,λ ]A[i,µ] c
ρ

λ µ
fρ, j,⟨·,·⟩, (4.9)

where the determinants A[ j,λ ] and A[i,µ] are defined in (4.6), cρ

λ µ
are the Littlewood-Richardson

numbers,

fρ, j,⟨·,·⟩ :=
1
j!

∫
[a,b] j

j

∏
l=1

dxlκ(xl) (detVx1,...,x j)
2sρ(x1, . . . ,x j), (4.10)

and Vx1,...,x j denotes the Vandermonde matrix corresponding to the variables x1, . . . ,x j.
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Proof. Consider the general formula for the initial minors of Gramian matrices provided in (3.2). By
substituting the minors of the collocation matrices in terms of Schur polynomials, as shown in (4.7),
we derive a compact expression for these minors. The derivation relies on the relation (4.8) for the
product of Schur polynomials, and the fact that the numbers cρ

λ µ
are zero unless |ρ|= |λ |+ |µ| . □

The evaluation of minors of Gramian matrices using the expression (4.9) involves summing over
all partitions λ and µ whose Young diagrams fit within a box of size j× (n+ 1− j), as well as over
partitions ρ for which the Littlewood-Richardson numbers cρ

λ µ
are nonzero. For a general matrix A,

the complexity of computing minors through (4.9) grows rapidly with n, primarily due to the need
to calculate the Littlewood-Richardson numbers. Although combinatorial methods exist for their
computation, these coefficients become increasingly costly to determine as n increases. Indeed, it
has been conjectured that no algorithm can compute Littlewood-Richardson numbers in polynomial
time [24].

However, this limitation is mitigated when considering lower triangular change of basis matrices A,
where the computation of initial minors becomes significantly simpler, as we will now show. Notably,
polynomial bases corresponding to lower triangular change of basis matrices constitute a broad and
commonly used family.

Corollary 4.1. Let G be the Gramian matrix (1.2) of a basis (p0, . . . , pn) of Pn(J) with respect to an
inner product (2.1). If the matrix A satisfying (4.3) is lower triangular, then

detG[i− j+1, . . . , i|1, . . . , j] = ∑
l(µ)≤ j

µ1≤n+1− j

A[ j, /0]A[i,µ] fµ, j,⟨·,·⟩, (4.11)

where the determinants A[ j, /0] and A[i,µ] are defined in (4.6) and fµ, j,⟨·,·⟩ is defined in (4.10).

Proof. In (4.9), be aware that, for lower triangular matrices A, A[ j,λ ] , 0 only in the case where λ = /0.
Then use the following property of Littlewood-Richardson numbers cρ

/0µ
= δ

ρ

µ .
□

5. Selberg-like integrals and examples

In this section, we address the computation of the values fµ, j,⟨·,·⟩. For a specific inner product,
the integrals in (4.10) have been explicitly calculated and are commonly referred to as Selberg-like
integrals. The case of integrals with the inner product

κ(t) := tα(1− t)β , J = [0,1],

has been studied by Kadell, among others. In [13, 14], it was found that for α,β >−1 and a partition
ρ = (ρ1, . . . ,ρ j), we have

I j(α,β ;ρ) =
∫
[0,1] j

j

∏
l=1

[dxl xα
l (1− xl)

β ] (detVx1,...,x j)
2sρ(x1, . . . ,x j)

= j! ∏
1≤i<k≤ j

(ρi −ρk + k− i)
j

∏
i=1

Γ(α +ρi + j− i+1)Γ(β + j− i+1)
Γ(α +β +2 j− i+1+ρi)

. (5.1)
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Also interesting for us is the result for the integral involving the product of two Schur polynomials
with the same arguments in the case that β = 0. In [12], it was found that for α > −1 and partitions
λ = (λ1, . . . ,λ j) and µ = (µ1, . . . ,µ j), we have

I j(α;λ ,µ) =
∫
[0,1] j

j

∏
l=1

[dxl xα
l ] (detVx1,...,x j)

2sλ (x1, . . . ,x j)sµ(x1, . . . ,x j)

= j! ∏
1≤i<k≤ j

(k− i+µi −µk)(k− i+λi −λk)
j

∏
i,k=1

1
α +2 j− i− k+1+λi +µk

. (5.2)

Now, the integral (5.2) can be used by substituting

∑
|ρ|=|λ |+|µ|

cρ

λ µ
fρ, j,⟨·,·⟩ =

1
j!

I j(α;λ ,µ)

in (4.9). Thus, for the case κ(t) = tα and J = [0,1], we have

detG[i− j+1, . . . , i|1, . . . , j] =
1
j! ∑

l(λ )≤ j
λ1≤n+1− j

∑
l(µ)≤ j

µ1≤n+1− j

A[ j,λ ]A[i,µ] I j(α;λ ,µ). (5.3)

So, for this particular case of inner product, the computation of (5.3) does not involve the Littlewood-
Richardson numbers, which significantly reduces the computational complexity. This simplification
arises from the remarkable properties of (5.2), which implicitly incorporates these numbers.

Algorithm 1 (see Appendix) provides an implementation of (5.3). To illustrate the application of
this formula for computing the minors detG[i− j+1, . . . , i |1, . . . , j], we present two notable examples
that highlight its efficiency and utility.

5.1. Bernstein mass matrices

Bernstein polynomials, defined as

Bn
i (t) :=

(
n
i

)
t i(1− t)n−i, i = 0, . . . ,n,

are square-integrable functions with respect to the inner product

⟨ f ,g⟩
α,β :=

∫ 1

0
tα(1− t)β f (t)g(t)dt, α,β >−1. (5.4)

The Gramian matrix of the Bernstein basis (Bn
0, . . . ,B

n
n) under the inner product (5.4) is denoted as

Gα,β = (gα,β
i, j )1≤i, j≤n+1, where

gα,β
i, j =

(
n

i−1

)(
n

j−1

)
Γ(i+ j+α −1)Γ(2n− i− j+β +3)

Γ(2n+α +β +2)
,

for 1 ≤ i, j ≤ n+1, and Γ(x) is the Gamma function (see [17]). In the special case where α = β = 0,
the Gramian matrix M := G(0,0) is referred to as the Bernstein mass matrix.
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For n = 2, G := G0,0 is

G =

 1/5 1/10 1/30
1/10 2/15 1/10
1/30 1/10 1/5

 .

It can be easily checked that (B2
0,B

2
1,B

2
2)

T = A(1, t, t2)T , with

A =

1 −2 1
0 2 −2
0 0 1

 .

Be aware that the matrix of change of basis A is not lower triangular, so we cannot use (4.11) to
compute the minors. Instead, we will use formula (5.2).

For detM[2,3|1,2], the partitions used for λ are {(1,1),(1,0),(0,0)} and for µ are
{(1,1),(1,0),(0,0)}. From (4.6), we can obtain A[2,λ ] and A[3,µ], respectively, as follows:

A[2,(1,1)] = detA[1,2|2,3] = 2, A[2,(1,0)] = detA[1,2|1,3] =−1, A[2,(0,0)] = detA[1,2|1,2] = 2,

A[3,(1,1)] = detA[2,3|2,3] = 2, A[3,(1,0)] = detA[2,3|1,3] = 0, A[3,(0,0)] = detA[2,3|1,2] = 0.

Then, taking into account (5.2) and I(λ ,µ) := I2(α;λ ,µ) for j = 2 and α = 0, we can obtain

I((1,1),(1,1)) = 2/240,
I((1,1),(1,0)) = I((1,0),(1,1)) = 2/60, I((1,1),(0,0)) = I((0,0),(1,1)) = 2/72,
I((1,0),(1,0)) = 8/45, I((1,0),(0,0)) = 2/12,
I((0,0),(0,0)) = 2/12.

Now, by (5.3), we obtain

detM[2,3|1,2] =

(1/2)
(

A[2,(1,1)]
(
A[3,(1,1)]I((1,1),(1,1))+A[3,(1,0)]I((1,1),(1,0))+A[3,(0,0)]I((1,1),(0,0)

))
+
(
A[2,(1,0)](A[3,(1,1)]I((1,0),(1,1))+A[3,(1,0)]I((1,0),(1,0))+A[3,(0,0)]I((1,0),(0,0))

)
+
(
A[2,(0,0)](A[3,(1,1)]I((0,0),(1,1))+A[3,(1,0)]I((0,0),(1,0))+A[3,(0,0)]I((0,0),(0,0))

)
=

1/180.

Following the same reasoning, we can obtain the other determinants.
While the matrix A is not lower triangular, the computation of Littlewood-Richardson numbers

can be avoided by using (5.2). Specifically, (5.3) can be efficiently applied to any polynomial basis,
provided that the inner product is defined as in (5.4) with β = 0.

As previously noted, the computation of Littlewood-Richardson numbers is also unnecessary for
polynomial bases associated with lower triangular matrices A. In such cases, the formula (4.11) is
applicable for any inner product, provided the corresponding Selberg-like integrals can be efficiently
evaluated. This approach achieves a comparable level of computational efficiency and is demonstrated
in the following example, which features a generic recursive basis.
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5.2. Recursive bases

The example of recursive bases illustrates that Eq (4.11) can be highly effective for computing
the minors detG[i− j + 1, . . . , i|1, . . . , j], especially when the structure of the basis change matrix A
facilitates systematic computation of its minors involving consecutive rows.

For given values b1, . . . ,bn+1 with bi > 0 for i = 1, . . . ,n+ 1, the recursive basis (p0, . . . , pn) is
defined by the polynomials:

pi =
i+1

∑
j=1

b j t j−1, i = 0, . . . ,n.

The corresponding change of basis matrix B, which satisfies (p0, . . . , pn)
T = B(m0, . . . ,mn)

T , where
mi := t i for i = 0, . . . ,n, is a nonsingular, lower triangular, and the TP matrix is structured as follows:

B =


b1 0 0 · · · 0
b1 b2 0 · · · 0
b1 b2 b3 · · · 0
...

...
...

. . .
...

b1 b2 b3 · · · bn+1

 .

Thus, the basis (p0, . . . , pn) is TP for t ∈ [0,∞). As before, we consider the inner product defined as:

⟨ f ,g⟩=
∫ 1

0
f (t)g(t)dt,

which corresponds to the special case of the inner product (5.4) with α = β = 0.
Let us note that the only nonzero minors of B are

B[i− j+1, . . . , i|m, i− j+2, i− j+3, . . . , i] = bm

j

∏
k=2

bi− j+k, m = 1, . . . , i− j+1.

This way, the only nonzero contributions to (4.11) come from the partitions µ = (µ1, . . . ,µ j) with

µr = i− j, r = 1, . . . , j−1, µ j = 0, . . . , i− j.

Applying (4.11) with (5.1), we obtain

detG[i− j+1, . . . , i|1, . . . , j] = b1

j

∏
k=2

bi− j+kbk

j−1

∏
l=1

( j− l)!2

(i− l +1) j

i− j

∑
m=0

1
(m+1) j

j−1

∏
r=1

(i−m− r)bm+1,

where (x)n := x(x+1) · · ·(x+n−1) denotes the Pochhammer symbol for ascending factorials.

6. Conclusions

We have shown that Gramian matrices can be expressed as limits of products of collocation matrices
associated with the corresponding bases. This formulation allows the total positivity property of the
bases to be extended to their Gramian matrices, whose minors can be written in terms of Selberg-like
integrals, in the polynomial case.
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Several open lines of research will be dealt with in future works. A logical continuation of this
work is to consider other internal products. We would like to point out that aside from the conceptual
and theoretical interest that Eqs (4.9) and (4.11) may have, their computational operativeness crucially
depends on the Selberg-like integrals to be solved. Different bases may be TP for different ranges,
and therefore the use of suitable inner products will be necessary. The chosen inner product will
enter explicitly the computation of the minors of G in Theorem 4.1 through the multivariable integrals
fρ, j,⟨·,·⟩. For this reason, in the future, it will be desirable to solve other Selberg-like integrals.

Besides the above proposal, Gramian matrices of non-polynomial basis could be considered, and
their bidiagonal decomposition studied using Theorem 3.1.
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Supplementary

Implementation of the code of formula (5.3)

Algorithm 1: MATLAB code formula (5.3)
Require: alpha, i, j, A
Ensure: G [i-j+1,. . . ,i—1,. . . ,j] (see (5.3))
n = size(A,1)
parts = partitions(j,n)
partsize = size(parts,1)
total = 0
for k1 = 1:partsize

rho = parts(k1,:)
sum = 0
for k2 = 1:partsize

mu = parts(k2,:)
sum = sum + Alambda(A,j,i,mu)∗ f(alpha,j,rho,mu)

end
G = G + Alambda(A,j,j,rho) ∗ sum

end
function s = s(j,vector)
comb = transpose(nchoosek(1:j,2))
s = 1
for c = comb

i = c(1)
k = c(2)

s = s ∗ (vector(i)-vector(k)+k-i)
end
function part = partitionsR(from, level)
part = []
for value = from:-1:0

if level > 1
res = partitionsR(min(from,value),level-1)
part = [part; [value .∗ ones(size(res,1),1) res]]

else
part = [part; value]

end
end
function partitions = partitions(j, n)
partitions = partitionsR(n-j,j)
function I = f(alpha,j,rho,mu)
I = s(j,rho) ∗ s(j,mu)
for i = 1:j

for k = 1:j
I = I ∗ 1 / (alpha + 2∗j - i - k + 1 + rho(i) + mu(k))

end
end
function Alambda = Alambda(A, j, i, lambda)
rows = (i-j+1):i
cols = flip(lambda) + (1:j)
Alambda = det(A(rows,cols))
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