This paper investigates the practical generalized finite-time synchronization (PGFETS) of duplex networks with quantized and delayed couplings. Given that continuous transmission of signals will increase the load and cost of communication, we introduce quantized couplings in the model. Then, via the theorem of finite-time stability, the PGFETS is proposed based on the fact that PGFETS is much more extensive and practical than classical finite-time synchronization. Some sufficient criteria are formulated to achieve the goal of synchronization by utilizing quantized intermittent control schemes. Lastly, the validity of the theoretical results is illustrated by numerical simulations.
Citation: Ting Yang, Li Cao, Wanli Zhang. Practical generalized finite-time synchronization of duplex networks with quantized and delayed couplings via intermittent control[J]. AIMS Mathematics, 2024, 9(8): 20350-20366. doi: 10.3934/math.2024990
This paper investigates the practical generalized finite-time synchronization (PGFETS) of duplex networks with quantized and delayed couplings. Given that continuous transmission of signals will increase the load and cost of communication, we introduce quantized couplings in the model. Then, via the theorem of finite-time stability, the PGFETS is proposed based on the fact that PGFETS is much more extensive and practical than classical finite-time synchronization. Some sufficient criteria are formulated to achieve the goal of synchronization by utilizing quantized intermittent control schemes. Lastly, the validity of the theoretical results is illustrated by numerical simulations.
[1] | S. B. Zhu, J. Zhou, J. H. Lü, J. A. Lu, Finite-time synchronization of impulsive dynamical networks with strong nonlinearity, IEEE Trans. Autom. Control, 66 (2021), 3550–3561. https://doi.org/10.1109/TAC.2020.3022532 doi: 10.1109/TAC.2020.3022532 |
[2] | A. L. Li, X. L. Ye, Finite-time anti-synchronization for delayed inertial neural networks via the fractional and polynomial controllers of time variable, AIMS Math., 6 (2021), 8173–8190. https://doi.org/10.3934/math.2021473 doi: 10.3934/math.2021473 |
[3] | T. H. Yu, J. D. Cao, L. Rutkowski, Y. P. Luo, Finite-time synchronization of complex-valued memristive-based neural networks via hybrid control, IEEE Trans. Neural Netw. Learn. Syst., 33 (2022), 3938–3947. https://doi.org/10.1109/TNNLS.2021.3054967 doi: 10.1109/TNNLS.2021.3054967 |
[4] | E. G. Tian, Y. Zou, H. T. Chen, Finite-time synchronization of complex networks with intermittent couplings and neutral-type delays, IEEE/CAA J. Autom. Sinica, 10 (2023), 2026–2028. https://doi.org/10.1109/JAS.2023.123171 doi: 10.1109/JAS.2023.123171 |
[5] | Y. H. Xu, X. Q. Wu, B. Mao, J. H. Lü, C. R. Xie, Finite-time intra-layer and inter-layer quasi-synchronization of two-layer multi-weighted networks, IEEE Trans. Circuits Syst. I, 68 (2021), 1589–1598. https://doi.org/10.1109/TCSI.2021.3050988 doi: 10.1109/TCSI.2021.3050988 |
[6] | C. J. Song, J. Zhou, J. S. Wang, Finite time inter-layer synchronization of duplex networks via event-dependent intermittent control, IEEE Trans. Circuits Syst. II, 69 (2022), 4889–4893. https://doi.org/10.1109/TCSII.2022.3187269 doi: 10.1109/TCSII.2022.3187269 |
[7] | T. Liang, W. L. Zhang, D. G. Yang, Fixed-time synchronization of switched duplex networks with stochastic disturbances and limited communication, Commun. Nonlinear Sci. Numer. Simul., 121 (2023), 107227. https://doi.org/10.1016/j.cnsns.2023.107227 doi: 10.1016/j.cnsns.2023.107227 |
[8] | X. F. Wu, H. B. Bao, J. D. Cao, Fixed-time synchronization of multiplex networks by sliding mode control, J. Frankl. Inst., 360 (2023), 5504–5523. https://doi.org/10.1016/j.jfranklin.2023.03.057 doi: 10.1016/j.jfranklin.2023.03.057 |
[9] | X. S. Yang, Q. X. Zhu, C. X. Huang, Generalized lag-synchronization of chaotic mix-delayed systems with uncertain parameters and unknown perturbations, Nonlinear Anal.-Real, 12 (2011), 93–105. https://doi.org/10.1016/j.nonrwa.2010.05.037 doi: 10.1016/j.nonrwa.2010.05.037 |
[10] | M. W. Zheng, Z. M. Wang, L. X. Li, H. P. Peng, J. H. Xiao, Y. X. Yang, et al., Finite-time generalized projective lag synchronization criteria for neutral-type neural networks with delay, Chaos Soliton. Fract., 107 (2018), 195–203. https://doi.org/10.1016/j.chaos.2018.01.009 doi: 10.1016/j.chaos.2018.01.009 |
[11] | Y. B. Wu, C. D. Wang, W. X. Li, Generalized quantized intermittent control with adaptive strategy on finite-time synchronization of delayed coupled systems and applications, Nonlinear Dyn., 95 (2019), 1361–1377. https://doi.org/10.1007/s11071-018-4633-z doi: 10.1007/s11071-018-4633-z |
[12] | P. Anand, B. B. Sharma, Generalized finite-time synchronization scheme for a class of nonlinear systems using backstepping like control strategy, Int. J. Dynam. Control, 11 (2023), 258–270. https://doi.org/10.1007/s40435-022-00948-y doi: 10.1007/s40435-022-00948-y |
[13] | D. S. Xu, Y. Liu, M. Liu, Finite-time synchronization of multi-coupling stochastic fuzzy neural networks with mixed delays via feedback control, Fuzzy Set. Syst., 411 (2021), 85–104. https://doi.org/10.1016/j.fss.2020.07.015 doi: 10.1016/j.fss.2020.07.015 |
[14] | H. W. Ren, Z. P. Peng, Y. Gu, Fixed-time synchronization of stochastic memristor-based neural networks with adaptive control, Neural Networks, 130 (2020), 165–175. https://doi.org/10.1016/j.neunet.2020.07.002 doi: 10.1016/j.neunet.2020.07.002 |
[15] | X. Wang, N. Pang, Y. W. Xu, T. W. Huang, J. Kurths, On state-constrained containment control for nonlinear multiagent systems using event-triggered input, IEEE Trans. Syst. Man Cybern.: Syst., 54 (2024), 2530–2538. https://doi.org/10.1109/TSMC.2023.3345365 doi: 10.1109/TSMC.2023.3345365 |
[16] | T. Y. Jing, D. Y. Zhang, T. L. Jing, Finite-time synchronization of hybrid-coupled delayed dynamic networks via aperiodically intermittent control, Neural Process. Lett., 52 (2020), 291–311. https://doi.org/10.1007/s11063-020-10245-4 doi: 10.1007/s11063-020-10245-4 |
[17] | Y. B. Wu, Y. X. Gao, W. X. Li, Finite-time synchronization of switched neural networks with state-dependent switching via intermittent control, Neurocomputing, 384 (2020), 325–334. https://doi.org/10.1016/j.neucom.2019.12.031 doi: 10.1016/j.neucom.2019.12.031 |
[18] | X. L. Xiong, X. S. Yang, J. D. Cao, R. Q. Tang, Finite-time control for a class of hybrid systems via quantized intermittent control, Sci. China Inf. Sci., 63 (2020), 192201. https://doi.org/10.1007/s11432-018-2727-5 doi: 10.1007/s11432-018-2727-5 |
[19] | Y. Ren, H. J. Jiang, J. R. Li, B. L. Lu, Finite-time synchronization of stochastic complex networks with random coupling delay via quantized aperiodically intermittent control, Neurocomputing, 420 (2021), 337–348. https://doi.org/10.1016/j.neucom.2020.05.103 doi: 10.1016/j.neucom.2020.05.103 |
[20] | R. Q. Tang, H. S. Su, Y. Zou, X. S. Yang, Finite-time synchronization of Markovian coupled neural networks with delays via intermittent quantized control: linear programming approach, IEEE Trans. Neural Netw. Learn. Syst., 33 (2022), 5268–5278. https://doi.org/10.1109/TNNLS.2021.3069926 doi: 10.1109/TNNLS.2021.3069926 |
[21] | C. Xu, X. S. Yang, J. Q. Lu, J. W. Feng, F. E. Alsaadi, T. Hayat, Finite-time synchronization of networks via quantized intermittent pinning control, IEEE Trans. Cybern., 48 (2018), 3021–3027. https://doi.org/10.1109/TCYB.2017.2749248 doi: 10.1109/TCYB.2017.2749248 |
[22] | S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear matrix inequalities in system and control theory, SIAM, 1994. https://doi.org/10.1137/1.9781611970777.bm |
[23] | Z. Y. Zuo, Nonsingular fixed-time consensus tracking for second-order multi-agent networks, Automatica, 54 (2015), 305–309. https://doi.org/10.1016/j.automatica.2015.01.021 doi: 10.1016/j.automatica.2015.01.021 |
[24] | J. Liu, G. T. Ran, Y. B. Wu, L. Xue, C. Y. Sun, Dynamic event-triggered practical fixed-time consensus for nonlinear multiagent systems, IEEE Trans. Circuits Syst. II, 69 (2022), 2156–2160. https://doi.org/10.1109/TCSII.2021.3128624 doi: 10.1109/TCSII.2021.3128624 |
[25] | J. Mei, M. H. Jiang, W. M. Xu, B. Wang, Finite-time synchronization control of complex dynamical networks with time delay, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2462–2478. https://doi.org/10.1016/j.cnsns.2012.11.009 doi: 10.1016/j.cnsns.2012.11.009 |
[26] | F. H. Clarke, Optimization and nonsmooth analysis, Hoboken, NJ, USA: Wiley, 1983. |
[27] | L. Cao, W. L. Zhang, Practical finite-time synchronization of T-S fuzzy complex networks with different couplings via semi-intermittent control, Int. J. Fuzzy Syst., in press. https://doi.org/10.1007/s40815-024-01686-3 |