In seismic data processing, both in inversion (Inverse Processing) and modeling (Direct Processing), it is essential to consider anisotropy to unravel the geological structure of the subsoil. Besides, in most cases, the macroscopic model of anisotropy in 2D seismic surveys is elliptical and weak, with ratios of anisotropy close to one. Therefore, it is crucial to have at disposal the analytical formulas for acoustic wave propagation in elliptical anisotropic media. We presented the generalization of the Snell's Law for the case of acoustic wave propagation in elliptically anisotropic media. The generalization of the Snell's Law for acoustic anisotropic media had different applications in digital processing, raytracing, and acoustic inversion to properly consider elliptical anisotropy.
Citation: Luis M. Pedruelo-González, Juan L. Fernández-Martínez. Generalization of Snell's Law for the propagation of acoustic waves in elliptically anisotropic media[J]. AIMS Mathematics, 2024, 9(6): 14997-15007. doi: 10.3934/math.2024726
In seismic data processing, both in inversion (Inverse Processing) and modeling (Direct Processing), it is essential to consider anisotropy to unravel the geological structure of the subsoil. Besides, in most cases, the macroscopic model of anisotropy in 2D seismic surveys is elliptical and weak, with ratios of anisotropy close to one. Therefore, it is crucial to have at disposal the analytical formulas for acoustic wave propagation in elliptical anisotropic media. We presented the generalization of the Snell's Law for the case of acoustic wave propagation in elliptically anisotropic media. The generalization of the Snell's Law for acoustic anisotropic media had different applications in digital processing, raytracing, and acoustic inversion to properly consider elliptical anisotropy.
[1] | P. Carrion, J. Costa, J. E. Ferrer-Pinheiro, M. Schoenberg, Cross-borehole tomography in anisotropic media, Geophysics, 57 (1992), 1194–1198. https://doi.org/10.1190/1.1443333 doi: 10.1190/1.1443333 |
[2] | J. L. Fernández-Martínez, L. M. Pedruelo-González, Anisotropic mean traveltime curves: a method to estimate anisotropic parameters from 2D transmission tomographic data, Math. Geosci., 41 (2008), 163–192. https://doi.org/10.1007/s11004-008-9202-4 doi: 10.1007/s11004-008-9202-4 |
[3] | T. Watanabe, T. Hirai, K. Sassa, Seismic traveltime tomography in anisotropic heterogeneous media, J. Appl. Geophys., 35 (1996), 133–143. https://doi.org/10.1016/0926-9851(96)00014-6 doi: 10.1016/0926-9851(96)00014-6 |
[4] | P. R. Williamson, M. S. Sams, M. H. Worthington, Crosshole imaging in anisotropic media, Lead. Edge, 12 (1993), 19–23. https://doi.org/10.1190/1.1436908 doi: 10.1190/1.1436908 |
[5] | X. Zhao, J. Wu, Major methods of seismic anisotropy, Earthquake Res. Adv., 2024. https://doi.org/10.1016/j.eqrea.2024.100295 doi: 10.1016/j.eqrea.2024.100295 |
[6] | L. T. Ikelle, L. Amundsen, Introduction to petroleum seismology, Society of Exploration Geophysicists, 2005. |
[7] | L. Vernik, X. Liu, Velocity anisotropy in shales: a petrophysical study, Geophysics, 62 (1997), 521–532. https://doi.org/10.1190/1.1444162 doi: 10.1190/1.1444162 |
[8] | Z. Wang, Seismic anisotropy in sedimentary rocks, part 2: laboratory data, Geophysics, 67 (2002), 1423–1440. https://doi.org/10.1190/1.1512743 doi: 10.1190/1.1512743 |
[9] | J. G. Berryman, Nonlinear inversion and tomography: 1, Borehole seismic tomography, Technical report, Lecture Notes from MIT, 1991. |
[10] | T. Mensch, P. Rasolofosaon, Elastic-wave velocities in anisotropic media of arbitrary symmetry generalization of Thomsen's parameters ε, δ and γ, Geophys. J. Int., 128 (1997), 43–64. https://doi.org/10.1111/j.1365-246X.1997.tb04070.x doi: 10.1111/j.1365-246X.1997.tb04070.x |
[11] | D. Price, A. Curtis, R. Wood, Statistical correlation between geophysical logs and extracted core, Geophysics, 73 (2008), E97–E106. https://doi.org/10.1190/1.2890409 doi: 10.1190/1.2890409 |
[12] | L. Thomsen, Weak elastic anisotropy, Geophysics, 51 (1986), 1954–1966. https://doi.org/10.1190/1.1442051 doi: 10.1190/1.1442051 |
[13] | J. L. Fernández-Martínez, L. M. Pedruelo-González, E. García-Gonzalo, AMTCLAB: a MATLAB®-based program for traveltime analysis and velocity tuning in 2D elliptical anisotropic media, Comput. Geosci., 35 (2009a), 2057–2064. https://doi.org/10.1016/j.cageo.2008.11.013 doi: 10.1016/j.cageo.2008.11.013 |
[14] | J. L. Fernández-Martínez, J. P. Fernández-Alvarez, L. M. Pedruelo-González, MTCLAB: a MATLAB®-based program for traveltime quality analysis and pre-inversion velocity tuning in 2-D transmission tomography, Comput. Geosci., 34 (2008), 213–225. https://doi.org/10.1016/j.cageo.2007.03.008 doi: 10.1016/j.cageo.2007.03.008 |
[15] | R. G. Pratt, C. H. Chapman, Traveltime tomography in anisotropic media−Ⅱ. Application, Geophys. J. Int., 109 (1992), 20–37. https://doi.org/10.1111/j.1365-246X.1992.tb00076.x doi: 10.1111/j.1365-246X.1992.tb00076.x |