Research article Special Issues

Generalization of Snell's Law for the propagation of acoustic waves in elliptically anisotropic media

  • Received: 02 January 2024 Revised: 13 April 2024 Accepted: 19 April 2024 Published: 25 April 2024
  • MSC : 86-XX

  • In seismic data processing, both in inversion (Inverse Processing) and modeling (Direct Processing), it is essential to consider anisotropy to unravel the geological structure of the subsoil. Besides, in most cases, the macroscopic model of anisotropy in 2D seismic surveys is elliptical and weak, with ratios of anisotropy close to one. Therefore, it is crucial to have at disposal the analytical formulas for acoustic wave propagation in elliptical anisotropic media. We presented the generalization of the Snell's Law for the case of acoustic wave propagation in elliptically anisotropic media. The generalization of the Snell's Law for acoustic anisotropic media had different applications in digital processing, raytracing, and acoustic inversion to properly consider elliptical anisotropy.

    Citation: Luis M. Pedruelo-González, Juan L. Fernández-Martínez. Generalization of Snell's Law for the propagation of acoustic waves in elliptically anisotropic media[J]. AIMS Mathematics, 2024, 9(6): 14997-15007. doi: 10.3934/math.2024726

    Related Papers:

  • In seismic data processing, both in inversion (Inverse Processing) and modeling (Direct Processing), it is essential to consider anisotropy to unravel the geological structure of the subsoil. Besides, in most cases, the macroscopic model of anisotropy in 2D seismic surveys is elliptical and weak, with ratios of anisotropy close to one. Therefore, it is crucial to have at disposal the analytical formulas for acoustic wave propagation in elliptical anisotropic media. We presented the generalization of the Snell's Law for the case of acoustic wave propagation in elliptically anisotropic media. The generalization of the Snell's Law for acoustic anisotropic media had different applications in digital processing, raytracing, and acoustic inversion to properly consider elliptical anisotropy.



    加载中


    [1] P. Carrion, J. Costa, J. E. Ferrer-Pinheiro, M. Schoenberg, Cross-borehole tomography in anisotropic media, Geophysics, 57 (1992), 1194–1198. https://doi.org/10.1190/1.1443333 doi: 10.1190/1.1443333
    [2] J. L. Fernández-Martínez, L. M. Pedruelo-González, Anisotropic mean traveltime curves: a method to estimate anisotropic parameters from 2D transmission tomographic data, Math. Geosci., 41 (2008), 163–192. https://doi.org/10.1007/s11004-008-9202-4 doi: 10.1007/s11004-008-9202-4
    [3] T. Watanabe, T. Hirai, K. Sassa, Seismic traveltime tomography in anisotropic heterogeneous media, J. Appl. Geophys., 35 (1996), 133–143. https://doi.org/10.1016/0926-9851(96)00014-6 doi: 10.1016/0926-9851(96)00014-6
    [4] P. R. Williamson, M. S. Sams, M. H. Worthington, Crosshole imaging in anisotropic media, Lead. Edge, 12 (1993), 19–23. https://doi.org/10.1190/1.1436908 doi: 10.1190/1.1436908
    [5] X. Zhao, J. Wu, Major methods of seismic anisotropy, Earthquake Res. Adv., 2024. https://doi.org/10.1016/j.eqrea.2024.100295 doi: 10.1016/j.eqrea.2024.100295
    [6] L. T. Ikelle, L. Amundsen, Introduction to petroleum seismology, Society of Exploration Geophysicists, 2005.
    [7] L. Vernik, X. Liu, Velocity anisotropy in shales: a petrophysical study, Geophysics, 62 (1997), 521–532. https://doi.org/10.1190/1.1444162 doi: 10.1190/1.1444162
    [8] Z. Wang, Seismic anisotropy in sedimentary rocks, part 2: laboratory data, Geophysics, 67 (2002), 1423–1440. https://doi.org/10.1190/1.1512743 doi: 10.1190/1.1512743
    [9] J. G. Berryman, Nonlinear inversion and tomography: 1, Borehole seismic tomography, Technical report, Lecture Notes from MIT, 1991.
    [10] T. Mensch, P. Rasolofosaon, Elastic-wave velocities in anisotropic media of arbitrary symmetry generalization of Thomsen's parameters ε, δ and γ, Geophys. J. Int., 128 (1997), 43–64. https://doi.org/10.1111/j.1365-246X.1997.tb04070.x doi: 10.1111/j.1365-246X.1997.tb04070.x
    [11] D. Price, A. Curtis, R. Wood, Statistical correlation between geophysical logs and extracted core, Geophysics, 73 (2008), E97–E106. https://doi.org/10.1190/1.2890409 doi: 10.1190/1.2890409
    [12] L. Thomsen, Weak elastic anisotropy, Geophysics, 51 (1986), 1954–1966. https://doi.org/10.1190/1.1442051 doi: 10.1190/1.1442051
    [13] J. L. Fernández-Martínez, L. M. Pedruelo-González, E. García-Gonzalo, AMTCLAB: a MATLAB®-based program for traveltime analysis and velocity tuning in 2D elliptical anisotropic media, Comput. Geosci., 35 (2009a), 2057–2064. https://doi.org/10.1016/j.cageo.2008.11.013 doi: 10.1016/j.cageo.2008.11.013
    [14] J. L. Fernández-Martínez, J. P. Fernández-Alvarez, L. M. Pedruelo-González, MTCLAB: a MATLAB®-based program for traveltime quality analysis and pre-inversion velocity tuning in 2-D transmission tomography, Comput. Geosci., 34 (2008), 213–225. https://doi.org/10.1016/j.cageo.2007.03.008 doi: 10.1016/j.cageo.2007.03.008
    [15] R. G. Pratt, C. H. Chapman, Traveltime tomography in anisotropic media−Ⅱ. Application, Geophys. J. Int., 109 (1992), 20–37. https://doi.org/10.1111/j.1365-246X.1992.tb00076.x doi: 10.1111/j.1365-246X.1992.tb00076.x
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(552) PDF downloads(30) Cited by(0)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog