Research article Special Issues

Bivariate $ \lambda $-Bernstein operators on triangular domain

  • Received: 25 February 2024 Revised: 09 April 2024 Accepted: 15 April 2024 Published: 22 April 2024
  • MSC : 41A10, 41A25, 41A36

  • This paper introduced a novel class of bivariate $ \lambda $-Bernstein operators defined on triangular domain, denoted as $ B_{m}^{\lambda_1, \lambda_2}(f; x, y) $. These operators leverage a new class of bivariate Bézier basis functions defined on triangular domain with shape parameters $ \lambda_1 $ and $ \lambda_2 $. A Korovkin-type approximation theorem for $ B_{m}^{\lambda_1, \lambda_2}(f; x, y) $ was established, with the convergence rate being characterized by both the complete and partial moduli of continuity. Additionally, a local approximation theorem and a Voronovskaja-type asymptotic formula were derived for $ B_{m}^{\lambda_1, \lambda_2}(f; x, y) $. Finally, the convergence of $ B_{m}^{\lambda_1, \lambda_2}(f; x, y) $ to $ f(x, y) $ was illustrated through graphical representations and numerical examples, highlighting instances where they surpass the performance of standard bivariate Bernstein operators defined on triangular domain, $ B_{m}(f; x, y) $.

    Citation: Guorong Zhou, Qing-Bo Cai. Bivariate $ \lambda $-Bernstein operators on triangular domain[J]. AIMS Mathematics, 2024, 9(6): 14405-14424. doi: 10.3934/math.2024700

    Related Papers:

  • This paper introduced a novel class of bivariate $ \lambda $-Bernstein operators defined on triangular domain, denoted as $ B_{m}^{\lambda_1, \lambda_2}(f; x, y) $. These operators leverage a new class of bivariate Bézier basis functions defined on triangular domain with shape parameters $ \lambda_1 $ and $ \lambda_2 $. A Korovkin-type approximation theorem for $ B_{m}^{\lambda_1, \lambda_2}(f; x, y) $ was established, with the convergence rate being characterized by both the complete and partial moduli of continuity. Additionally, a local approximation theorem and a Voronovskaja-type asymptotic formula were derived for $ B_{m}^{\lambda_1, \lambda_2}(f; x, y) $. Finally, the convergence of $ B_{m}^{\lambda_1, \lambda_2}(f; x, y) $ to $ f(x, y) $ was illustrated through graphical representations and numerical examples, highlighting instances where they surpass the performance of standard bivariate Bernstein operators defined on triangular domain, $ B_{m}(f; x, y) $.



    加载中


    [1] X. M. Zeng, F. Cheng, On the rates of approximation of Bernstein type operators, J. Approx. Theory, 109 (2001), 242–256. https://doi.org/10.1006/jath.2000.3538 doi: 10.1006/jath.2000.3538
    [2] V. Gupta, Some approximation properties of q-Durrmeyer operators, Appl. Math. Comput., 197 (2008), 172–178. https://doi.org/10.1016/j.amc.2007.07.056 doi: 10.1016/j.amc.2007.07.056
    [3] G. Nowak, Approximation properties for generalized q-Bernstein polynomials, J. Math. Anal. Appl., 350 (2009), 50–55. https://doi.org/10.1016/j.jmaa.2008.09.003 doi: 10.1016/j.jmaa.2008.09.003
    [4] P. N. Agrawal, V. Gupta, A. S. Kumar, On q-analogue of Bernstein-Schurer-Stancu operators, Appl. Math. Comput., 219 (2013), 7754–7764. https://doi.org/10.1016/j.amc.2013.01.063 doi: 10.1016/j.amc.2013.01.063
    [5] X. Chen, J. Tan, Z. Liu, J. Xie, Approximation of functions by a new family of generalized Bernstein operators, J. J. Math. Anal. Appl., 450 (2017), 244–261. https://doi.org/10.1016/j.jmaa.2016.12.075
    [6] V. Gupta, G. Tachev, A. M. Acu, Modified Kantorovich operators with better approximation properties, Numer. Algor., 81 (2019), 125–149. https://doi.org/10.1007/s11075-018-0538-7 doi: 10.1007/s11075-018-0538-7
    [7] D. D. Stancu, A method for obtaining polynomials of Bernstein type of two variables, Am. Math. Month., 70. (1963), 260–264. https://doi.org/10.1080/00029890.1963.11990079
    [8] Q. Cai, B. Lian, G. Zhou, Approximation properties of $\lambda$-Bernstein operators, J. Inequal. Appl., 2018 (2018), 61. https://doi.org/10.1186/s13660-018-1653-7 doi: 10.1186/s13660-018-1653-7
    [9] Z. Ye, X. M. Zeng, Adjustment algorithms for Bézier curve and surface, In: 2010 5th International Conference on Computer Science & Education, 2010, 1712–1716. https://doi.org/10.1109/ICCSE.2010.5593563
    [10] A. M. Acu, N. Manav, D. F. Sofonea, Approximation properties of $\lambda$-Kantorovich operators, J. Inequal. Appl., 2018 (2018), 202. https://doi.org/10.1186/s13660-018-1795-7 doi: 10.1186/s13660-018-1795-7
    [11] Q. Cai, The Bézier variant of Kantorovich type $\lambda$-Bernstein operators, J. Inequal. Appl., 2018 (2018), 90. https://doi.org/10.1186/s13660-018-1688-9 doi: 10.1186/s13660-018-1688-9
    [12] Q. Cai, G. Zhou, J. Li, Statistical approximation properties of $\lambda$-Bernstein operators based on $q$-integers, Open Math., 17 (2019), 487–498. https://doi.org/10.1515/math-2019-0039 doi: 10.1515/math-2019-0039
    [13] F. Özger, Weighted statistical approximation properties of univariate and bivariate $\lambda$-Kantorovich operators, Filomat, 33 (2019), 3473–3486. https://doi.org/10.2298/FIL1911473O doi: 10.2298/FIL1911473O
    [14] Q. Cai, R. Arslan, On a new construction of generalized q-Bernstein polynomials based on shape parameter $\lambda$, Symmetry, 13 (2021), 1919. https://doi.org/10.3390/sym13101919 doi: 10.3390/sym13101919
    [15] A. Kumar, Approximation properties of generalized $\lambda$-Bernstein-Kantorovich type operators, Rend. Circ. Mat. Palermo Ser. II, 70 (2021), 505–520. https://doi.org/10.1007/s12215-020-00509-2 doi: 10.1007/s12215-020-00509-2
    [16] R. Pratap, The family of $\lambda$-Bernstein-Durrmeyer operators based on certain parameters, Math. Found. Comput., 6 (2023), 546–557. https://doi.org/10.3934/mfc.2022038 doi: 10.3934/mfc.2022038
    [17] C. Badea, I. Badea, H. H. Gonska, A test function theorem and approximation by pseudopolynomials, Bull. Austral. Math. Soc., 34 (1986), 53–64. https://doi.org/10.1017/S0004972700004494 doi: 10.1017/S0004972700004494
    [18] G. A. Anastassiou, S. Gal, Approximation theory: Moduli of continuity and global smoothness preservation, Boston: Birkhäuser, 2000. https://doi.org/10.1007/978-1-4612-1360-4
    [19] P. L. Butzer, H. Berens, Semi-groups of operators and approximation, New York: Springer, 1967. https://doi.org/10.1007/978-3-642-46066-1
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(497) PDF downloads(52) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog