Research article

Rational interpolative contractions with applications in extended $ b $-metric spaces

  • Received: 03 February 2024 Revised: 01 April 2024 Accepted: 10 April 2024 Published: 18 April 2024
  • MSC : 45E99, 47H10, 54H25, 55M20

  • In this manuscript, utilizing interpolative contractions with fractional forms, some unique fixed-point results were studied in the context of extended $ b $-metric spaces. For the validity of the presented results some examples are given. In the last section an existence theorem is provided to study the existence of a solution for the Fredholm integral equation.

    Citation: Muhammad Sarwar, Muhammad Fawad, Muhammad Rashid, Zoran D. Mitrović, Qian-Qian Zhang, Nabil Mlaiki. Rational interpolative contractions with applications in extended $ b $-metric spaces[J]. AIMS Mathematics, 2024, 9(6): 14043-14061. doi: 10.3934/math.2024683

    Related Papers:

  • In this manuscript, utilizing interpolative contractions with fractional forms, some unique fixed-point results were studied in the context of extended $ b $-metric spaces. For the validity of the presented results some examples are given. In the last section an existence theorem is provided to study the existence of a solution for the Fredholm integral equation.



    加载中


    [1] A. Fulga, On interpolative contractions that involves rational forms, Adv. Differ. Equations, 2021 (2021), 448. https://doi.org/10.1186/s13662-021-03605-4 doi: 10.1186/s13662-021-03605-4
    [2] I. A. Bakhtin, The contraction mapping principle in quasi metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., 30 (1989), 26–37.
    [3] S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inf. Univ. Ostrav., 1 (1993), 5–11.
    [4] I. A. Rus, Generalized contractions and applications, Cluj-Napoca: Cluj University Press, 2001.
    [5] C. Chifu, E. Karapınar, On contractions via simulation functions on extended $b$-metric spaces, Miskolc Math. Notes, 21 (2020), 127–141. https://doi.org/10.18514/MMN.2020.2871 doi: 10.18514/MMN.2020.2871
    [6] T. Kamran, M. Samreen, O. U. Ain, A generalization of $b$-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019
    [7] B. Alqahtani, A. Fulga, E. Karapınar, Common fixed point results on extended $b$-metric space, J. Inequal. Appl., 2018 (2015), 158. https://doi.org/10.1186/s13660-0181745-4 doi: 10.1186/s13660-0181745-4
    [8] A. Pant, R. P. Pant, Fixed points and continuity of contractive maps, Filomat, 31 (2017), 3501–3506. https://doi.org/10.2298/FIL1711501P doi: 10.2298/FIL1711501P
    [9] O. Popescu, Some new fixed point theorems for $\alpha$-Geraghty contraction type maps in metric spaces, Fixed point Theory Appl., 2014 (2014), 190. https://doi.org/10.1186/1687-1812-2014-190 doi: 10.1186/1687-1812-2014-190
    [10] H. Qawagneh, M. S. Noorani, W. Shatanawi, H. Alsamir, Common fixed points for pairs of triangular $\alpha$-admissible mappings, J. Nonlinear Sci. Appl., 10 (2017), 6192–-6204
    [11] E. Karapınar, Revisiting the Kannan type contractions via interpolation, Adv. Theory Nonlinear Anal. Appl., 2 (2018), 85–87. https://doi.org/10.31197/atnaa.431135 doi: 10.31197/atnaa.431135
    [12] L. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267–273. https://doi.org/10.1090/S0002-9939-1974-0356011-2 doi: 10.1090/S0002-9939-1974-0356011-2
    [13] S. Reich, Some remarks concerning contraction mappings, Can. Math. Bull., 14 (1971), 121–124. https://doi.org/10.4153/CMB-1971-024-9 doi: 10.4153/CMB-1971-024-9
    [14] G. E. Hardy, T. D. Rogers, A generalization of a fixed point theorem of Reich, Can. Math. Bull., 16 (1973), 201–206. https://doi.org/10.4153/CMB-1973-036-0 doi: 10.4153/CMB-1973-036-0
    [15] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71–76.
    [16] R. M. Bianchini, M. Grandolfi, Transformazioni di tipo contracttivo generalizzato in uno spazio mretrico, Atti Accad. Naz. Lincei Ci Sci. Fis. Mat. Natur. Rend, 45 (1968), 212–216.
    [17] R. P. Agarwal, E. Karapınar, Interpolative Rus-Reich-Ćirić type contractions via simulation functions, An. Sti. Univ. Ovid. Constanţa, 27 (2019), 137–152. https://doi.org/10.2478/auom-2019-0038
    [18] H. Aydi, C. Chen, E. Karapınar, Interpolative Ćirić-Reich-Rus type contractions via the Branciari distance, Mathimatics, 7 (2019), 84. https://doi.org/10.3390/math7010084 doi: 10.3390/math7010084
    [19] P. Debnath, Z. D. Mitrović, S. Radenović, Interpolative Hardy-Rogers and Reich-Rus-Ćirić type contractions in $b$-metric spaces and rectangular $b$-metric spaces, Mat. Vesn., 72 (2020), 368–374.
    [20] M. I. Berenguer, M. V. F. Muñoz, A. I. G. Guillem, M. R. Galán, Numerical treatment of fixed point applied to the nonlinear Fredholm integral equation, Fixed Point Theory Appl., 2009 (2009), 735638. https://doi.org/10.1155/2009/735638 doi: 10.1155/2009/735638
    [21] M. I. Berenguer, D. Gámez, Numerical solution of non-linear Fredholm-Hammerstein integral equation via Schauder bases, Int. J. Appl. Nonlinear Sci., 1 (2013), 20–29. https://doi.org/10.1504/IJANS.2013.05275 doi: 10.1504/IJANS.2013.05275
    [22] S. K. Panda, T. Abdeljawad, C. Ravichandran, A complex valued approach to the solutions of Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear telegraph equation via fixed point method, Chaos Solitons Fract., 130 (2020), 109439. https://doi.org/10.1016/j.chaos.2019.109439 doi: 10.1016/j.chaos.2019.109439
    [23] T. Abdeljawad, R. P. Agarwal, P. S. Kumari, Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended $b$-metric space, Symmetry, 11 (2019), 686. https://doi.org/10.3390/sym11050686 doi: 10.3390/sym11050686
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(508) PDF downloads(55) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog