Let $ \Gamma $ be a group, $ \mathcal{A} $ be a $ \Gamma $-graded commutative ring with unity $ 1, $ and $ \mathcal{D} $ a graded $ \mathcal{A} $-module. In this paper, we introduce the concept of graded weakly $ J_{gr} $-semiprime submodules as a generalization of graded weakly semiprime submodules. We study several results concerning of graded weakly $ J_{gr} $ -semiprime submodules. For example, we give a characterization of graded weakly $ J_{gr} $-semiprime submodules. Also, we find some relations between graded weakly $ J_{gr} $-semiprime submodules and graded weakly semiprime submodules. In addition, the necessary and sufficient condition for graded submodules to be graded weakly $ J_{gr} $-semiprime submodules are investigated. A proper graded submodule $ U $ of $ \mathcal{D} $ is said to be a graded weakly $ J_{gr} $-semiprime submodule of $ \mathcal{D} $ if whenever $ r_{g}\in h(\mathcal{A}), $ $ m_{h}\in h(\mathcal{D}) $ and $ n\in \mathbb{Z} ^{+} $ with $ 0\neq r_{g}^{n}m_{h}\in U $, then $ r_{g}m_{h}\in U+J_{gr}(\mathcal{D}) $, where $ J_{gr}(\mathcal{D}) $ is the graded Jacobson radical of $ \mathcal{D}. $
Citation: Malak Alnimer, Khaldoun Al-Zoubi, Mohammed Al-Dolat. On graded weakly $ J_{gr} $-semiprime submodules[J]. AIMS Mathematics, 2024, 9(5): 12315-12322. doi: 10.3934/math.2024602
Let $ \Gamma $ be a group, $ \mathcal{A} $ be a $ \Gamma $-graded commutative ring with unity $ 1, $ and $ \mathcal{D} $ a graded $ \mathcal{A} $-module. In this paper, we introduce the concept of graded weakly $ J_{gr} $-semiprime submodules as a generalization of graded weakly semiprime submodules. We study several results concerning of graded weakly $ J_{gr} $ -semiprime submodules. For example, we give a characterization of graded weakly $ J_{gr} $-semiprime submodules. Also, we find some relations between graded weakly $ J_{gr} $-semiprime submodules and graded weakly semiprime submodules. In addition, the necessary and sufficient condition for graded submodules to be graded weakly $ J_{gr} $-semiprime submodules are investigated. A proper graded submodule $ U $ of $ \mathcal{D} $ is said to be a graded weakly $ J_{gr} $-semiprime submodule of $ \mathcal{D} $ if whenever $ r_{g}\in h(\mathcal{A}), $ $ m_{h}\in h(\mathcal{D}) $ and $ n\in \mathbb{Z} ^{+} $ with $ 0\neq r_{g}^{n}m_{h}\in U $, then $ r_{g}m_{h}\in U+J_{gr}(\mathcal{D}) $, where $ J_{gr}(\mathcal{D}) $ is the graded Jacobson radical of $ \mathcal{D}. $
[1] | K. Al-Zoubi, A. Al-Qderat, Some properties of graded comultiplication modules, Open Math., 15 (2017), 187–192. https://doi.org/10.1515/math-2017-0016 doi: 10.1515/math-2017-0016 |
[2] | K. Al-Zoubi, R. Abu-Dawwas, I. Al-Ayyoub, Graded semiprime submodules and graded semi-radical of graded submodules in graded modules, Ricerche Math., 66 (2017), 449–455. https://doi.org/10.1007/s11587-016-0312-x doi: 10.1007/s11587-016-0312-x |
[3] | K. Al-Zoubi, S. Alghueiri, On graded $J_gr$-semiprime submodules, Ital. J. Pure Appl. Math., 46 (2021), 361–369. |
[4] | S. E. Atani, On graded prime submodules, Chiang Mai J. Sci., 33 (2006), 3–7. |
[5] | S. E. Atani, R. E. Atani, Graded multiplication modules and the graded ideal $\theta _{g}(M)$, Turk. J. Math., 33 (2009), 1–9. |
[6] | P. Deligne, Quantum fields and strings: A course for mathematicians, American Mathematical Society, 1999. |
[7] | J. Escoriza, B. Torrecillas, Multiplication objects in commutative grothendieck categories, Comm. Alge., 26 (1998), 1867–1883. https://doi.org/10.1080/00927879808826244 doi: 10.1080/00927879808826244 |
[8] | F. Farzalipour, On graded almost semiprime submodules, J. Algebra Relat. Topics, 1 (2013), 41–55. |
[9] | F. Farzalipour, P. Ghiasvand, On graded semiprime and graded weakly semiprime ideals, Int. Electron. J. Algebra, 13 (2013), 15–22. |
[10] | F. Farzalipour, P. Ghiasvand, On graded semiprime submodules, Int. J. Math. Comput. Sci., 6 (2012), 694–697. |
[11] | R. Hazrat, Graded rings and graded grothendieck groups, Cambridge University Press, 2016. |
[12] | I. Kolar, P. W. Michor, J. Slovak, Natural operations in differential geometry, Springer Science Business Media, 2013. |
[13] | S. C. Lee, R. Varmazyar, Semiprime submodules of Graded multiplication modules, J. Korean Math. Soc, 49 (2012), 435–447. http://dx.doi.org/10.4134/JKMS.2012.49.2.435 doi: 10.4134/JKMS.2012.49.2.435 |
[14] | C. Nastasescu, F. Van Oystaeyen, Graded and filtered rings and modules, Berlin: Springer, 1979 |
[15] | C. Nastasescu, F. Van Oystaeyen, Graded ring theory, Amsterdam: Mathematical Library, 1982. |
[16] | C. Nastasescu, F. Van Oystaeyen, Methods of graded rings, Berlin-Heidelberg: Springer-Verlag, 2004. http://dx.doi.org/10.1007/b94904 |
[17] | A. Rogers, Supermanifolds: Theory and applications, World Scientific, 2007. |
[18] | H. A. Tavallaee, M. Zolfaghari, Graded weakly semiprime submodules of graded multiplication modules, Lobachevskii J. Math., 34 (2013), 61–67. http://dx.doi.org/10.1134/S1995080213010113 doi: 10.1134/S1995080213010113 |