The goal of this paper was to improve some known results of fixed points by using $ w $-distances and properties of locally symmetric $ \mathcal{H} $-transitivity of binary relations. Also, we gave the application of the obtained results for finding the solution of nonlinear matrix equations. Finally, we gave a numerical example to demonstrate the applicability of our results.
Citation: Koti N. V. V. V. Prasad, Vinay Mishra, Zoran D. Mitrović, Ahmad Aloqaily, Nabil Mlaiki. Fixed point results for generalized almost contractions and application to a nonlinear matrix equation[J]. AIMS Mathematics, 2024, 9(5): 12287-12304. doi: 10.3934/math.2024600
The goal of this paper was to improve some known results of fixed points by using $ w $-distances and properties of locally symmetric $ \mathcal{H} $-transitivity of binary relations. Also, we gave the application of the obtained results for finding the solution of nonlinear matrix equations. Finally, we gave a numerical example to demonstrate the applicability of our results.
[1] | V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum, 9 (2004), 43–54. |
[2] | V. Berinde, General constructive fixed point theorems for Ćirić-type almost contractions in metric spaces, Carpathian J. Math., 24 (2008), 10–19. https://www.jstor.org/stable/43996855 |
[3] | V. Berinde, M. Pacurar, Fixed points and continuity of almost contractions, Fixed Point Theory, 9 (2008), 23–34. |
[4] | G. V. R. Babu, M. L. Sandhya, M. V. R. Kameswari, A note on a fixed point theorem of Berinde on weak contractions, Carpathian J. Math., 24 (2008), 8–12. https://www.jstor.org/stable/43996834 |
[5] | O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Mathematica Japonicae, 44 (1996), 381–391. |
[6] | B. S. Choudhury, P. Chakraborty, Fixed point problem of a multi-valued Kannan-Geraghty type contraction via $w$-distance, J. Anal., 31 (2023), 439–458. https://doi.org/10.1007/s41478-022-00457-3 doi: 10.1007/s41478-022-00457-3 |
[7] | E. Karapınar, S. Romaguera, P. Tirado, Characterizations of quasi-metric and G-metric completeness involving $w$-distances and fixed points, Demonstr. Math., 55 (2022), 939–951. https://doi.org/10.1515/dema-2022-0177 doi: 10.1515/dema-2022-0177 |
[8] | S. Barootkoob, E. Karapınar, H. Lakzian, A. Chanda, Extensions of Meir-Keeler contraction via $w$-distances with an application, Kragujev. J. Math., 46 (2022), 533–547. https://doi.org/10.46793/KgJMat2204.533B doi: 10.46793/KgJMat2204.533B |
[9] | H. K. Nashine, R. Pant, Feng-Liu type fixed point theorems for $w$-distance spaces and applications, Filomat, 36 (2022), 3899–3917. https://doi.org/10.2298/FIL2211899N doi: 10.2298/FIL2211899N |
[10] | R. Jain, H. K. Nashine, Z. Kadelburg, Positive solutions of nonlinear matrix equations via fixed point results in relational metric spaces with $w$-distance, Filomat, 36 (2022), 4811–4829. https://doi.org/10.2298/FIL2214811J doi: 10.2298/FIL2214811J |
[11] | H. Lakzian, B. E. Rhoades, Some fixed point theorems using weaker Meir-Keeler function in metric spaces with $w$-distance, Appl. Math. Comput., 342 (2019), 18–25. https://doi.org/10.1016/j.amc.2018.06.048 doi: 10.1016/j.amc.2018.06.048 |
[12] | H. Lakzian, D. Kocev, V. Rakočević, Ćirić-generalized contraction via $wt$-distance, Appl. Gen. Topol., 24 (2023), 267–280. http://dx.doi.org/10.4995/agt.2023.19268 doi: 10.4995/agt.2023.19268 |
[13] | S. Reich, A. J. Zaslavski, Genericity in nonlinear analysis, Springer Science & Business Media, 2013. |
[14] | A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 1435–1443. https://doi.org/10.1090/S0002-9939-03-07220-4 doi: 10.1090/S0002-9939-03-07220-4 |
[15] | A. Alam, M. Imdad, Relation-theoretic contraction principle, J. Fixed Point Theory Appl., 17 (2015), 693–702. https://doi.org/10.1007/s11784-015-0247-y doi: 10.1007/s11784-015-0247-y |
[16] | A. Alam, M. Imdad, Nonlinear contractions in metric spaces under locally $t$-transitive binary relations, Fixed Point Theory, 19 (2018), 13–24. https://doi.org/10.24193/fpt-ro.2018.1.02 doi: 10.24193/fpt-ro.2018.1.02 |
[17] | G. Prasad, Fixed point theorems via $w$-distance in relational metric spaces with an application, Filomat, 34 (2020), 1889–1898. https://doi.org/10.2298/FIL2006889P doi: 10.2298/FIL2006889P |
[18] | G. Prasad, R. C. Dimri, Fixed point theorems for weakly contractive mappings in relational metric spaces with an application, J. Anal., 26 (2018), 151–162. https://doi.org/10.1007/s41478-018-0076-7 doi: 10.1007/s41478-018-0076-7 |
[19] | W. Shatanawi, T. A. M. Shatnawi, New fixed point results in controlled metric type spaces based on new contractive conditions, AIMS Math., 8 (2023), 9314–9330. https://doi.org/10.3934/math.2023468 doi: 10.3934/math.2023468 |
[20] | A. Z. Rezazgui, A. A. Tallafha, W. Shatanawi, Common fixed point results via $A\nu$-$\alpha$-contractions with a pair and two pairs of self-mappings in the frame of an extended quasi b-metric space, AIMS Math., 8 (2023), 7225–7241. https://doi.org/10.3934/math.2023363 doi: 10.3934/math.2023363 |
[21] | N. H. Altaweel, N. H. E. Eljaneid, H. I. A. Mohammed, I. M. Alanazi, F. A. Khan, Coincidence theorems under generalized nonlinear relational contractions, Symmetry, 15 (2023), 1–17. https://doi.org/10.3390/sym15020434 doi: 10.3390/sym15020434 |
[22] | S. Shil, H. K. Nashine, Unique positive definite solution of non-linear matrix equation on relational metric spaces, Fixed Point Theory, 24, (2023), 367–382. https://doi.org/10.24193/fpt-ro.2023.1.20 doi: 10.24193/fpt-ro.2023.1.20 |
[23] | S. Antal, D. Khantwal, S. Negi, U. C. Gairola, Fixed points theorems for $(\phi, \psi, p)$-weakly contractive mappings via $w$-distance in relational metric spaces with applications, Filomat, 37 (2023), 7319–7328. |
[24] | R. D. Maddux, Relation Algebras, Amsterdam: Elsevier Science Limited, 2006. |
[25] | A. Alama, M. Imdad, Relation-theoretic metrical coincidence theorems, Filomat, 31 (2017), 4421–4439. https://doi.org/10.2298/FIL1714421A doi: 10.2298/FIL1714421A |
[26] | M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, B. Aust. Math. Soc., 30 (1984), 1–9. https://doi.org/10.1017/S0004972700001659 doi: 10.1017/S0004972700001659 |
[27] | T. Senapati, L. K. Dey, Relation-theoretic metrical fixed-point results via $w$-distance with applications, J. Fixed Point Theory Appl., 19 (2017), 2945–2961. https://doi.org/10.1007/s11784-017-0462-9 doi: 10.1007/s11784-017-0462-9 |
[28] | T. Wongyat, W. Sintunavarat, The existence and uniqueness of the solution for nonlinear Fredholm and Volterra integral equations together with nonlinear fractional differential equations via $w$-distances, Adv. Differ. Equ., 2017 (2017), 1–15. https://doi.org/10.1186/s13662-017-1267-2 doi: 10.1186/s13662-017-1267-2 |
[29] | G. V. R. Babu, P. D. Sailaja, A fixed point theorem of generalized weakly contractive maps in orbitally complete metric spaces, Thai J. Math., 9 (2012), 1–10. |
[30] | M. R. Turinici, Contractive operators in relational metric spaces, Handbook of Functional Equations: Functional Inequalities, 95 (2014), 419–458. https://doi.org/10.1007/978-1-4939-1246-9 doi: 10.1007/978-1-4939-1246-9 |
[31] | B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. Theor., 47 (2001), 2683–2693. |
[32] | P. N. Dutta, B. S. Choudhury, A generalisation of contraction principle in metric spaces, Fixed Point Theory A., 2008 (2008), 1–8. |
[33] | Q. Zhang, Y. Song, Fixed point theory for generalized $\psi$-weak contractions, Appl. Math. Lett., 22 (2009), 75–78. https://doi.org/10.1016/j.aml.2008.02.007 doi: 10.1016/j.aml.2008.02.007 |
[34] | S. Radenović, Z. Kadelburg, Generalized weak contractions in partially ordered metric spaces, Comput. Math. Appl., 60 (2010), 1776–1783. https://doi.org/10.1016/j.camwa.2010.07.008 doi: 10.1016/j.camwa.2010.07.008 |
[35] | A. C. M. Ran, M. C. B. Reurings, On the nonlinear matrix equation $X+ A^* F (X) A = Q:$ Solutions and perturbation theory, Linear Algebra Appl., 346 (2002), 15–26. https://doi.org/10.1016/S0024-3795(01)00508-0 doi: 10.1016/S0024-3795(01)00508-0 |
[36] | S. Shil, H. K. Nashine, Positive definite solution of non-linear matrix equations through fixed point technique, AIMS Math., 7 (2022), 6259–6281. https://doi.org/10.3934/math.2022348 doi: 10.3934/math.2022348 |