Research article Special Issues

Coefficient bounds for certain families of bi-Bazilevič and bi-Ozaki-close-to-convex functions

  • Received: 03 December 2023 Revised: 11 January 2024 Accepted: 06 February 2024 Published: 26 February 2024
  • MSC : 30C45, 30C50

  • The aim of this work is to introduce two families, $ \mathcal{B}_{\Sigma}(\wp; \vartheta) $ and $ \mathcal{O}_{\Sigma}(\varkappa; \vartheta) $, of holomorphic and bi-univalent functions involving the Bazilevič functions and the Ozaki-close-to-convex functions, by using generalized telephone numbers. We determinate upper bounds on the Fekete-Szegö type inequalities and the initial Taylor-Maclaurin coefficients for functions in these families. We also highlight certain edge cases and implications for our findings.

    Citation: Muajebah Hidan, Abbas Kareem Wanas, Faiz Chaseb Khudher, Gangadharan Murugusundaramoorthy, Mohamed Abdalla. Coefficient bounds for certain families of bi-Bazilevič and bi-Ozaki-close-to-convex functions[J]. AIMS Mathematics, 2024, 9(4): 8134-8147. doi: 10.3934/math.2024395

    Related Papers:

  • The aim of this work is to introduce two families, $ \mathcal{B}_{\Sigma}(\wp; \vartheta) $ and $ \mathcal{O}_{\Sigma}(\varkappa; \vartheta) $, of holomorphic and bi-univalent functions involving the Bazilevič functions and the Ozaki-close-to-convex functions, by using generalized telephone numbers. We determinate upper bounds on the Fekete-Szegö type inequalities and the initial Taylor-Maclaurin coefficients for functions in these families. We also highlight certain edge cases and implications for our findings.



    加载中


    [1] I. Al-Shbeil, A. K. Wanas, A. Saliu, A. Cătaş, Applications of beta negative binomial distribution and Laguerre polynomials on Ozaki bi-close-to-convex functions, Axioms, 11 (2022), 451.
    [2] Ş. Altınkaya, S. Yalçin, Fekete-Szegö inequalities for certain classes of biunivalent functions, Int. Scholarly Res. Not., 2014 (2014), 327962. https://doi.org/10.1155/2014/327962 doi: 10.1155/2014/327962
    [3] A. G. Al-Amoush, Coefficient estimates for a new subclasses of $\lambda$-pseudo biunivalent functions with respect to symmetrical points associated with the Horadam Polynomials, Turk. J. Math., 43 (2019), 2865–2875.
    [4] A. Amourah, Fekete-Szegö inequalities for analytic and bi-univalent functions subordinate to $(p, q)$-Lucas Polynomials, Complex Var, 2020, arXiv: 2004.00409.
    [5] A. Amourah, B. A. Frasin, T. Abdeljaward, Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Gegenbauer polynomials, J. Funct. Space., 2021 (2021), 5574673. http://doi.org/10.1155/2021/5574673 doi: 10.1155/2021/5574673
    [6] A. Amourah, B. A. Frasin, G. Murugusundaramoorthy, T. Al-Hawary, Bi-Bazilevič functions of order $\vartheta + i\delta$ associated with $(p; q)$-Lucas polynomials, AIMS Mathematics, 6 (2021), 4296–4305. http://doi.org/10.3934/math.2021254 doi: 10.3934/math.2021254
    [7] U. Bednarz, M. Wolowiec-Musial, On a new generalization of telephone numbers, Turk. J. Math., 43 (2019), 1595–1603.
    [8] D. Breaz, G. Murugusundaramoorthy, K. Vijaya, L. I. Cotȋrlǎ, Certain class of bi-univalent functions defined by Salagean $q$-difference operator related with involution numbers, Symmetry, 15 (2023), 1302.
    [9] D. Breaz, A. K. Wanas, F. M. Sakar, S. M. Aydoǧan, On a Fekete–Szegö problem associated with generalized telephone numbers, Mathematics, 11 (2023), 3304.
    [10] S. Bulut, Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions, Filomat, 30 (2016), 1567–1575.
    [11] M. Çaǧlar, E. Deniz, H. M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent functions, Turk. J. Math., 41 (2017), 694–706.
    [12] M. Çaǧlar, G. Palpandy, E. Deniz, Unpredictability of initial coefficient bounds for $m$-fold symmetric bi-univalent starlike and convex functions defined by subordinations, Afr. Mat., 29 (2018), 793–802.
    [13] A. Cataş, A note on subclasses of univalent functions defined by a generalized Sălăgean operator, Acta Univ. Apulensis, 12 (2006), 73–78.
    [14] L. I. Cotȋrlǎ, New classes of analytic and bi-univalent functions, AIMS Mathematics, 6 (2021), 10642–10651. http://doi.org/10.3934/math.2021618 doi: 10.3934/math.2021618
    [15] L.I. Cotȋrlǎ, A. K. Wanas, Coefficient-related studies and Fekete–Szegö inequalities for new classes of bi-Starlike and bi-convex functions, Symmetry, 14 (2022), 2263.
    [16] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Classical Anal., 2 (2013), 49–60.
    [17] E. Deniz, Sharp coefficient bounds for starlike functions associated with generalized telephone numbers, Bull. Malays. Math. Sci. Soc., 44 (2021), 1525–1542.
    [18] E. Deniz, M. Kamali, S. Korkmaz, A certain subclass of bi-univalent functions associated with Bell numbers and $q$-Srivastava Attiya operator, AIMS Mathematics, 5 (2020), 7259–7271. https://doi.org/10.3934/math.2020464 doi: 10.3934/math.2020464
    [19] E. Deniz, M. Çaǧlar, H. Orhan, Second Hankel determinant for bi-starlike and bi-convex functions of order $\beta$, Appl. Math. Comput., 271 (2015), 301–307.
    [20] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, New York, Berlin, Heidelberg, Tokyo: Springer, 1983.
    [21] M. Fekete, G. Szegö, Eine bemerkung uber ungerade schlichte funktionen, J. London Math. Soc., 2 (1933), 85–89.
    [22] B. A. Frasin, S. R. Swamy, J. Nirmala, Some special families of holomorphic and Al-Oboudi type bi-univalent functions related to $k$-Fibonacci numbers involving modified Sigmoid activation function, Afr. Mat., 32 (2020), 631–643.
    [23] J. O. Hamzat, M. O. Oluwayemi, A. A. Lupaş, A. K. Wanas, Bi-univalent problems involving generalized multiplier transform with respect to symmetric and conjugate points, Fractal Fract., 6 (2022), 483.
    [24] H. Ö. Güney, G. Murugusundaramoorthy, J. Sokół, Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, Acta Univ. Sapient. Math., 10 (2018), 70–84.
    [25] W. Kaplan, Close-to-convex schlicht functions, Michi. Math J., 1 (1952), 169–185.
    [26] R. Kargar, A. Ebadian, Ozaki's conditions for general integral operator, Sahand Commun. Math. Anal., 5 (2017), 61–67.
    [27] S. Kazimoǧlu, E. Deniz, Fekete-Szegö problem for generalized bi-subordinate functions of complex order, Hacet. J. Math. Stat., 49 (2020), 1695–1705.
    [28] B. Khan, H. M. Srivastava, M. Tahir, M. Darus, Q. Z. Ahmad, N. Khan, Applications of a certain $q$-integral operator to the subclasses of analytic and bi-univalent functions, AIMS Mathematics, 6 (2021), 1024–1039. http://doi.org/10.3934/math.2021061 doi: 10.3934/math.2021061
    [29] A. A. Lupas, S. M. El-Deeb, Subclasses of bi-univalent functions connected with integral operator based upon Lucas polynomial, Symmetry, 14 (2022), 622.
    [30] S. S. Miller, P. T. Mocanu, Differential Subordinations: Theory and Applications, New York, Basel: Marcel Dekker Incorporated, 2000.
    [31] G. Murugusundaramoorthy, K. Vijaya, Certain subclasses of analytic functions associated with generalized telephone numbers, Symmetry, 14 (2022), 1053.
    [32] G. Murugusundaramoorthy, K. Vijaya, Bi-starlike function of complex order involving mathieu-type series associated with telephone numbers, Symmetry, 15 (2023), 638.
    [33] G. Murugusundaramoorthy, J. Sokół, On $\wp-$ Pseudo Bi-Starlike Functions related to some conic domains, Bull. Transilvania Univ. Braşov Ser. III: Math. Inf. Phys., 12 (2019), 381–392 https://doi.org/10.31926/but.mif.2019.12.61.2.15 doi: 10.31926/but.mif.2019.12.61.2.15
    [34] S. Ozaki, On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku Sec. A, 2 (1935), 167–188.
    [35] R. K. Raina, J. Sokol, Fekete-Szegö problem for some starlike functions related to shell-like curves, Math. Slovaca, 66 (2016), 135–140.
    [36] R. Singh, On Bazilevič functions, Proc. Amer. Math. Soc., 38 (1973), 261–271.
    [37] H. M. Srivastava, Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in Geometric Function theory of Complex Analysis, Iran J. Sci. Technol. Trans. Sci., 44 (2020), 327–344.
    [38] H. M. Srivastava, Ş. Altınkaya, S. Yalçin, Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A$:$ Sci., 43 (2019), 1873–1879.
    [39] H. M. Srivastava, S. S. Eker, S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Bull. Iran. Math. Soc., 44 (2018), 149–157.
    [40] H. M. Srivastava, S. Gaboury, F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat., 28 (2017), 693–706.
    [41] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192.
    [42] H. M. Srivastava, A. Motamednezhad, E. A. Adegani, Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator, Mathematics, 8 (2020), 172.
    [43] H. M. Srivastava, A. K. Wanas, Applications of the Horadam polynomials involving $\wp$-pseudo-starlike bi-univalent functions associated with a certain convolution operator, Filomat, 35 (2021), 4645–4655.
    [44] H. M. Srivastava, A. K. Wanas, H. Ö. Güney, New families of bi-univalent functions associated with the Bazilevič functions and the $\lambda$-Pseudo-starlike functions, Iran. J. Sci. Technol. Trans. A$:$ Sci., 45 (2021), 1799–1804.
    [45] H. M. Srivastava, A. K. Wanas, R. Srivastava, Applications of the $q$-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials, Symmetry, 13 (2021), 1230.
    [46] H. M. Srivastava, A. K. Wanas, G. Murugusundaramoorthy, A certain family of bi-univalent functions associated with the Pascal distribution series based upon the Horadam polynomials, Surv. Math. Appl., 16 (2021), 193–205.
    [47] H. M. Srivastava, G. Murugusundaramoorty, T. Bulboacă, The second Hankel determinant for subclasses of Bi-univalent functions associated with a nephroid domain, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 116 (2022), 145. http://doi.org/10.1007/s13398-022-01286-6 doi: 10.1007/s13398-022-01286-6
    [48] H. M. Srivastava, T. G. Shaba, G. Murugusundaramoorthy, A. K. Wanas, G. I. Oros, The Fekete-Szegö functional and the Hankel determinant for a certain class of analytic functions involving the Hohlov operator, AIMS Mathematics, 8 (2022), 340–360. https://doi.org/10.3934/math.2023016 doi: 10.3934/math.2023016
    [49] S. R. Swamy, A. K. Wanas, A comprehensive family of bi-univalent functions defined by (m, n)-Lucas polynomials, Bol. Soc. Mat. Mex., 28 (2022), 34.
    [50] A. K. Wanas, F. M. Saka, A. A. Lupaş, Applications Laguerre polynomials for families of bi-univalent functions defined with $(p, q)$-Wanas operator, Axioms, 12 (2023), 430.
    [51] A. K. Wanas, G. S. Sǎlǎgean, P.-S. A. Orsolya, Coefficient bounds and Fekete-Szegö inequality for a certain family of holomorphic and bi-univalent functions defined by (M, N)-Lucas polynomials, Filomat, 37 (2023), 1037–1044.
    [52] A. Wloch, M. Wolowiec-Musial, On generalized telephone number, their interpretations and matrix generators, Util. Math., 10 (2017), 531–539.
    [53] P. Zaprawa, On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21 (2014), 169–178. http://doi.org/10.36045/bbms/1394544302 doi: 10.36045/bbms/1394544302
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(286) PDF downloads(50) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog