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1. Introduction and preliminaries

Indicate by (A the family of holomorphic functions in the open unit disk U = {z € C : |z| < 1} of the
form
fR=z2+ ) ad (1.1)
)
The A subfamily of functions that are univalent in U is denoted by S.
We denote by S*, C, and K the families of functions that starlike, convex, and close-to-convex in
U, respectively, and given as follows:
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A function f € 8 is said to be starlike if

zf"(2)
%(f(z))>0’ ze U,

a function f € S is said to be convex if

(zf' @)
R 0,
( 1@ ) g

and a function f € S is said to be a close-to-convex functions if

ze U,

%(Zf(z))>0;g68*, zeU.
8()

Note that, C ¢ S* c K.

The families of functions that are starlike of order N(0 < N < 1) and convex of order R(0 £ K < 1)
are denoted by S*(X) and C(N), respectively, and are given as follows:

ey o (22
S(N)—{feS.‘R(f(Z))>N, zeU}

and

C(RX) = {f €S: ?&((Zf'(z»l) >N, ze U}.
@)

A well known subclass of S, named as class of Bazilevic function [36], is defined as:
1—p £7
2 "f(@)
l—go) >
(f(2)
For 0 < @ < &, Kaplan [25] defined a subfamily of A called close-to-convex functions, given as:

S’ (@)
8(2)

B(p):{feﬂ:%( 0; zeU;go;O}.

‘K(a):{feﬂ:‘R(e )>O;g€8*z€U}.

In 1935, Ozaki [34] considered functions in A satisfying the condition

z2f"(2) 1
%(1+ o) )>—§, zeU,

whose members are known to be close-to-convex and therefore univalent.
Lately, Kargar and Ebadian [26] considered the generalization of Ozaki’s condition as the following:

Definition 1.1. Let f € A be locally univalent for z € U and let —
Ozaki-close-to-convex function in U if

‘R(I+Z§:é§))>%—%, zeU.

3 < # £ 1. A function f is called an
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We denote by F'(x) the family of all Ozaki-close-to-convex functions. Itis clear that, for —5 < % <
we have F(x) c K ¢ S§*.

In U, a function f € A is considered bi-univalent if f and f~! are both univalent functions. Denote
by X all bi-univalent functions in U. We revisit a few functions in the family 2 from Srivastava et al.’s

work [41]. We notice that the family Z consists of

1 1
2 2°

Z 1 1+z2
—, —log(l - d -1 e
2 og( 2) an 7 Og(l—z)

and so is not empty, however the Koebe function is not a member of X. Also, the functions z — % and
7=z are not bi-univalent. A very large number of works related to the class X have been presented in the
recent papers (one may see [1,3,6,8,10-12,14,16,18,19,22-24,27-29,31-33,38-40,42-46,49-51]).

The Littlewood-Paley conjecture (see [21]) that the coefficients of odd univalent functions are
bounded by unity has been refuted by Fekete and Szegd, a fact widely recognized in the field of
Geometric Function Theory (GFT). Consequently, given f € S, we get the Fekete-Szegd problem
|a3 - ha§|. Many authors studied and deduced the Fekete-Szego inequality for different families of
functions (see [2-5,9,13,17,30,35,38,40,41,47,48,53]) in GFT.

2. Generalized telephone numbers(GTN)

The recurrence relation quantifies traditional telephone numbers:
X =X({t-1)+({-1DX(-2), 22

Initial conditions:

X(0)=X(1)=1.

For integers £ = 0 and ¢ = 1, Wloch and Wolowiec-Musial [52] defined generalized telephone
numbers X(g, £) by the recurrence relation:

X(6,0) = ¢X(s, 0 = 1) + (£ = DX(¢, £ - 2),

with initial conditions
X(,0)=1 and X(s,1)=g.

Bednarz and Wolowiec-Musial [7] recently examined the accessible generalization of phone
numbers using the formula

X(0) =X (=1 +¢(€ - DXL -2),
where £ = 2 and ¢ = 1 with initial conditions
X(0)=X.(1) = 1.

According to Deniz [17], who conducted this investigation very recently, X ({) has an exponential
generating function

2 b £
Jrs3) _ Z xg(g)%,
=0 )
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As ¢ =1, classical phone numbers X (£) = X({) are evident.
Now, we study the function

(e+s%) 2 2
9z)=e\ " :1+z+(1+g)3+(1+3g‘)g+--~ 2.1)

with its domain of definition as the open unit disk U. Note that the holomorphic function #(z) in U, with
a positive real part such that #(0) = 1, ¢#'(0) > 0, and ¥ maps U onto an area that is symmetric with
respect to the real axis and starlike with respect to 1. Using the generalized telephone numbers, we now
give the following subfamilies of holomorphic bi-Ozaki-close-to-convex and bi-Bazilevi€ functions.

Definition 2.1. If a function f € X satisfies the following subordinations, it belongs to the family

Bs(9; ) e ot
z ! Z z+g£
_ 1) =9
G ®©
and 1= o 2
w Vg (w) e(w+§%) = 9(w),

(gw)'™

where ¢ is non-negative integer, ¢ = 1, and g(w) = f~1(w).

Remark 2.1. If we take = 0 in Definition 2.1, the family Bs(p; ) reduces to the family S5 (), which
was studied recently by Cotirld and Wanas (see [15]).

Definition 2.2. The family Oz (x; @) contains all the functions f € X if the next subordinations satisfy:

2 — 1 2 zf"(2) (z+§%) _.
2%+1+2%+1(1+f’(z))<e =90

and

2% — 1 2 wg” (w) (W+gﬁ)
1 =19
2%+1+2%+1( " g’(w))<e ).

where 3 % < 1,62 1,and gw) = f~'(w).

Remark 2.2. Ifwe take x = % in Definition 2.2, the family Os(x; ) reduces to the family Cs (1), which
was introduced recently by Cotirld and Wanas (see [15]).

In the following sections we determine the upper bounds on the Fekete-Szego type inequalities and
the initial Taylor-Maclaurin coefficients for functions in these families in Definitions 2.1 and 2.2.

3. Initial Taylor coefficient estimates

We recall the following lemma where we obtain the upper bounds on the Fekete-Szegd type
inequalities and the initial Taylor-Maclaurin coefficients for functions in f € Bs(p;#), where g is
non-negative integer.

Lemma 3.1. ( [20], p.41) Let h € P be given by the following series:
h(Z):1+C1Z+C2Z2+"' , where zeU
then
lcal £2 , forall neN.
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Theorem 3.1. If f given by (1.1) is in the family Bx(g; #), where ¢ is non-negative integer, then

|a2|§min{ ! , < 2}
e+ 1 \|w+2 @+ D+U-¢)(p+1)

and

@ < mm{ P+e+2 1 1 }

, + .
P+ @+ (p+1)7 9+2
Proof. Assume that f € Bs(p; ) and that ' = g. We consider the holomorphic functions ®, T :
U — U, where ©(0) = T(0) = 0, satisfying the following criteria:

Zl—@f/(z)
—— =%0O(2)), U 3.1
Gy O e G-b
" W) ey, weU (3.2)
e U. .
()" "
Define the functions m and n by
— 1 + ®(Z) = 2 “e
m(z) = 00 =1+mz+mz +
and 1+7
n(z) = 1_‘1,23 =l+mz+mz+---

It follows that m, n are analytic functions in U, where m(0) = 1 = n(0). Then, we get ®,7T : U —
U, where m and n are functions with a positive real part in U.
But, we have

1- 1] m?
®(Z):_m(Tm-:Z1):§ m1Z+(m2—71)z2 +--- ,zelU (3.3)
and ) )
1- 1 n
T(z) = _n(z)njzl) =3 n1z+(n2—31)z2 +--- ,zeU. (3.4)

By substituting (3.3) and (3.4) into (3.1) and (3.2) and applying (2.1), we get

m(z)—1

z'” Wf (Z) [m()+l+ m()+l J my (c— l)m%
?(0@R) =e =14+-mz+ + = T 24 (3.5)

(f(z Fe)'™ 2 8 |

and

wi g (w) [T(W)«lﬁ (:832:}2] n, (¢—1Dn?]
—gl_:ﬁ(‘r(w))=€ t =1+ -mw+ 202 T2y (3.6)

(W)™ 2 2 T8

Equating the coefficients in (3.5) and (3.6) yields
1

(p + Day = -my, (3.7)

2
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1 m, (¢—1)m?
(p +2)as + 5(50 +2)(p — Da3 = 72 ¥ Tl

1
—(p+ Day = 5”1

and

n, (- 1)”%

1
(p +2)(2a; - as) + 5(80 +2)(p — Daj = >+
From (3.7) and (3.9), we have

8

m; = —mn
and .
mp+1fa§:1@ﬁ+nb
If we add (3.8) to (3.10), we obtain

1 1
(P+2)(p+1)a; = Flma+m) + 25— D(mi + ).

Substituting from (3.12) the value of m? + n7 in the relation (3.13), we get
my + np

2[(p+ D+ D+ =) (p+17]

2 _
02—

Applying Lemma 3.1 for the coefficients m;, m,, ny, and n, in (3.12) and (3.14), we get

la| <

1
2p +2)(a3 — a3) = E(mz — ny).
Substituting a% from (3.12) into (3.15) yields the following result:

2 2
m1+n1 nmy —ny

az = + .
T8+ 1)} Ap+2)

So, we have
1 1

+ .
(p+1)7? p+2
Also, substituting the value of a% from (3.13) into (3.15), we get

|as| <

My — M + mp + np + (g‘—l)(l’l’l%+l’l%)
T Ap+2) 2+2(@p+1) 8+ (p+1)

as

and we have
Pp+c+2
las| <

GEMICESV

2
s |a2| é 2
p+1 @+ @+ D+ -¢)(p+1)|

Applying (3.11) and subtracting (3.10) from (3.8) yields mf = nf which is the bound on |as],

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

O
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Theorem 3.2. Letf € Os(x;19) (% <x < 1) and f be given by (1.1). Then,

(2% + 1)? 2%+ 1 }

a»] £ min R
ozl = { 16 " 2VRG—9) + 3|

and

2%+ DBs+5) 2% +1 . (2% + 1)?
24 12 16 '

las| < min{

Proof. Assume that f € Os(x;9) and g = f~!. Specifically, there exist holomorphic functions ®, Y :
U — U, hence

2% -1 2 (1+zf”(z)

T T o ) = 9(0(z)), where zeU (3.16)

and

2% —1 N 2 |+ wg” (w)
20 +1 2% +1 g'(w)
where O(z) and Y'(z) have the forms (3.3) and (3.4). From (3.16), (3.17), and (2.1), we deduce that

m(5)-12
m(z)—1+ (m(z)+1) ]
m(z)+1 2

) =HY(w)), where welU, (3.17)

Dy — 7’
X 1+ 2 1+zf 9]
2x+1 2% +1

) =9(0(z)) = e[

1@
1 - Dm?
:1+§m1z+[%+%]zz+ (3.18)
and
2 — 1 2 wg” (w) ["E”E:Hc(mi;} 2]
1 =9(Y =
2%+1+2%+1( T e ) (X)) =e
1 - Dn?
= L+ Smw + %Jr%]w% (3.19)
Equating the coeflicients in (3.18) and (3.19), yields
4 1
2w+ 1612 = EI’I’Z], (320)
12 8 , my (- l)m%
— ==+ — 3.21
1 12T 2 T T3 32D
4 1
- o+ 1612 = El’ll (322)
and )
12 8 n, (¢—Dbn
2a% — az) — 2= =+ L 3.23
P 12020 " =y 8 (3:23)
From (3.20) and (3.22), we have
my = —n, (3.24)
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and 32 1
2 2, .2
a5 = —(m7 + ny). 3.25
Qx+ 1) Z0m ) 6.2
If we add (3.21) to (3.23), we obtain
k 2—1( + )+1( D(mj +n}) (3.26)

Substituting from (3.25) the value of mf + n% in the relation (3.26), we deduce that

2% + 1)2 (my + ny)

2
= . 3.27
7 1620 — o)+ 3) (3:27)
Applying Lemma 3.1 for the coefficients m;, m,, ny, and n, in (3.25) and (3.27), we get
2% + 1) 2% + 1
lay| £ ———, las| < .
16 2 VR —¢) + 3
Subtracting (3.23) from relation (3.21) and applying (3.24), we get |as|.
This yields m? = n?, hence
2 ( 3 = 1( ) (3.28)
2n 12T R T R, '
then by substituting from (3.25) the value of a% into (3.28), we get
_ Qe Dm—ny) Qx4 D Gmi+ n)
@ = 48 128 '
So, we have
o] < 2% + 1 +(2%+1)2
D) 6
Also, substituting the value of a% from (3.26) into (3.28), we get
_ (2x+ 1)(my — ) N 2% + 1)(my + ny) N 2%+ 1) — 1)(mf + n%)
4= 48 16 64
and we have
@] < 2%+ 1)(3¢+5)
= 24 '
O

Utilizing a; and a3 values, and spurred by Zaprawa’s recent work [53], we prove the Fekete-Szego
problem for f € Bs(p; ) and f € Og(x;?) in the following theorems.

Theorem 3.3. For a non-negative integer ¢ and 71 € R, let f € Bx(p;?) be of the form (1.1). Then,

1. i — 1] < (020 D=9+ 1]
p+2° = 2(p+2) ’

|a3 — ha§| <

-1 . |(p+2)(p+ D+(1-6)(p+1)?|
s n—-1] 2
[(0+2)(p+ D+(1-9)(p+ 1| 2p+2)
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Proof. 1t follows from (3.14) and (3.15) that

nyp —ny
as — haj = o+ 2) +(1-h)a;

_m-m (my +ny) (1 — 1)
Ap+2) 2+ (p+ D+ -)(p+1)

1 1 1
=5 [(w(h, S)+ o+ 2))mz + (w(h, S) - o+ 2))nz] ,

1-%
@+ @+ D+ -9 (p+ 17>
According to Lemma 3.1, we find that

where

Yy(h,q) =

1 1
o2 0=y, 9l < 2p+2)°
|a3 — ha§| <

2, W92 g

After some computations, we obtain

|(p+2)(p+ D+(1-6)(p+17?|

1.
Tt =1l = 2+ ’
|a3 - ha§| <
2011 : h—1|2 |9+ (p+D+(1-e)(0+1)’]
[(p+2)(p+D+(1-6)(p+1)*| = 2(p+2)

Putting 2 = 1 in Theorem 3.3, we get the next result:
Corollary 3.1. If f € Bs(p; 1) is of the form (1.1), then we have that

1
p+2

|a3 - a%| <

Theorem 3.4. For 5 <x < 1 and 7 € R, let f € Os(x; 1) be of the form (1.1). Then,

1
2
1. 12—l
69 |h - ll é Ta
|a3 - ha%| <

1] . 1> 2=

Proof. It follows from (3.27) and (3.28) that

as—ha = 2 ll(g” —") (-
2+ Dy — o) N (22 + 1)* (my + o) (1 = 1)
B 48 16Q2(¢ — ¢) +3)
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1 2%+ 1 2%+ 1
=E[(¢(h,§)+ %; )mz+(¢(h,§)— s )nz]

3
where
2%+ 1)* (1 - h)
¢(h,¢) = .
2t —¢)+3
According to Lemma 3.1, we find that
2l 0 < lp(n, o) < 2,
|a3 - ha%| <
o, ol p(h, o)l = 2.
After some computations, we obtain
2+1 . Qr+1D)2(%—¢)+3|
2 n—1] = 3Qu+1)?
|a3 - ha§| <
Qe+ D?)i-1], _ 2x+DR2(x=¢)+3|
42(x—¢)+3 ? h—1lz 3(2+1)?

Fixing 7 = 1 in Theorem 3.4, we get the following result:
Corollary 3.2. If f € Ox(x; ) is of the form (1.1), then

2% + 1
12

|a3 - a%| <
Remark 3.1. ¢ =0 and x = % give the results of Cotirld and Wanas (see [15]).

4. Conclusions

Motivated by many recent advances on the Fekete-Szegd functional and Taylor-Maclaurin
coeflicient estimations, we defined new families of holormorphic bi-univalent functions Bs(gp; ) and
Os(x; 1) associated with generalized telephone numbers are presented and thoroughly examined in
this article. For functions in these families, we determined Taylor-Maclaurin coefficient inequalities
and examined the well-known Fekete-Szego issue. Furthermore, the generic coeflicients |a,|, n = 4,
for the functions of these new classes remain unbounded. We also opted to utilize a significant finding
from a recently released evaluate-cum-explanatory paper by Srivastava ( [37], p. 340) to extend our
study based on the g-difference operator. This observation pointed out that using some seemingly
parametric and argumentative versions of the extra parameter p is redundant; the effects for the new or
previously mentioned g—analogs could be easily (and possibly trivially) translated into corresponding
effects for the so-called (p; g)—analogues (with O < |g| < 1). Further, one can obtain the second
Hankel determinant inequalities for function classes studied in this article (see [42—47] and references
cited therein).
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