Research article Special Issues

The sum of a hybrid arithmetic function over a sparse sequence

  • Let λf(n) be the n-th normalized Fourier coefficient of f, which is a primitive holomorphic cusp form of even integral weight k2 for the full modular group SL2(Z). Let also σ(n) and ϕ(n) be the sum-of-divisors function and the Euler totient function, respectively. In this paper, we are able to establish the asymptotic formula of the sum of the hybrid arithmetic function λlf(n)σc(n)ϕd(n) over the sparse sequence {n:n=a2+b2}, namely, nxλlf(n)σc(n)ϕd(n)r2(n) for 1l8, where x is a sufficiently large real number, the function r2(n) denotes the number of representations of n as n=a2+b2, a,b,lZ and c,dR.

    Citation: Huafeng Liu, Rui Liu. The sum of a hybrid arithmetic function over a sparse sequence[J]. AIMS Mathematics, 2024, 9(2): 4830-4843. doi: 10.3934/math.2024234

    Related Papers:

    [1] Fei Hou, Bin Chen . On triple correlation sums of Fourier coefficients of cusp forms. AIMS Mathematics, 2022, 7(10): 19359-19371. doi: 10.3934/math.20221063
    [2] Guangwei Hu, Huixue Lao, Huimin Pan . High power sums of Fourier coefficients of holomorphic cusp forms and their applications. AIMS Mathematics, 2024, 9(9): 25166-25183. doi: 10.3934/math.20241227
    [3] Rui Zhang, Yang Li, Xiaofei Yan . Exponential sums involving the divisor function over arithmetic progressions. AIMS Mathematics, 2023, 8(5): 11084-11094. doi: 10.3934/math.2023561
    [4] Fei Hou . On the exponential sums estimates related to Fourier coefficients of $ GL_3 $ Hecke-Maaß forms. AIMS Mathematics, 2023, 8(4): 7806-7816. doi: 10.3934/math.2023392
    [5] Stefano Bonaccorsi, Bernard Hanzon, Giulia Lombardi . A generalized Budan-Fourier approach to generalized Gaussian and exponential mixtures. AIMS Mathematics, 2024, 9(10): 26499-26537. doi: 10.3934/math.20241290
    [6] Tingting Jiang, Jiantao Jiang, Jing An . An efficient Fourier spectral method and error analysis for the fourth order problem with periodic boundary conditions and variable coefficients. AIMS Mathematics, 2023, 8(4): 9585-9601. doi: 10.3934/math.2023484
    [7] Wenjia Guo, Yuankui Ma, Tianping Zhang . New identities involving Hardy sums $S_3(h, k)$ and general Kloosterman sums. AIMS Mathematics, 2021, 6(2): 1596-1606. doi: 10.3934/math.2021095
    [8] Wei Yang, Lili Pan, Jinhui Wan . Smoothing gradient descent algorithm for the composite sparse optimization. AIMS Mathematics, 2024, 9(12): 33401-33422. doi: 10.3934/math.20241594
    [9] Lei Liu, Zhefeng Xu . Mean value of the Hardy sums over short intervals. AIMS Mathematics, 2020, 5(6): 5551-5563. doi: 10.3934/math.2020356
    [10] Xin Liu, Yan Wang . Averaging principle on infinite intervals for stochastic ordinary differential equations with Lévy noise. AIMS Mathematics, 2021, 6(5): 5316-5350. doi: 10.3934/math.2021314
  • Let λf(n) be the n-th normalized Fourier coefficient of f, which is a primitive holomorphic cusp form of even integral weight k2 for the full modular group SL2(Z). Let also σ(n) and ϕ(n) be the sum-of-divisors function and the Euler totient function, respectively. In this paper, we are able to establish the asymptotic formula of the sum of the hybrid arithmetic function λlf(n)σc(n)ϕd(n) over the sparse sequence {n:n=a2+b2}, namely, nxλlf(n)σc(n)ϕd(n)r2(n) for 1l8, where x is a sufficiently large real number, the function r2(n) denotes the number of representations of n as n=a2+b2, a,b,lZ and c,dR.



    Let Hk be the set of all normalized primitive holomorphic cusp form of even integral weight k2 for the full modular group SL2(Z). The primitive holomorphic cusp form fHk at the cusp z= has the Fourier expansion

    f(z)=n=1nk12λf(n)e2πinz,   Im(z)>0,

    where λf(n) is the n-th normalized Fourier coefficient. λf(n) is real-valued and has the following multiplicative property

    λf(m)λf(n)=d|(m,n)λf(mnd2)

    with m,nN+. In number theory, the study of the Fourier coefficient λf(n) is of great significance and has attracted attention of many mathematicians. Let d(n) be the Dirichlet divisor function. In 1974, Deligne [1] proved the Ramanujan-Petersson conjecture

    |λf(n)|d(n).

    In 1927, Hecke [2] established that

    nxλf(n)x12.

    Subsequently, Hecke's result was refined by many scholars and the best result now is

    nxλf(n)x13logρx,

    where ρ=0.118, proved by Wu [3]. In 1930, by their powerful method Rankin [4] and Selberg [5] proved

    nxλ2f(n)=cx+O(x35),

    where c is a positive constant depending on f. Recently, the exponent 35 was improved to 35Δ with Δ1560 by Huang [6]. There is also a long history on higher powers sums nxλlf(n) with l3, and here we refer to the references [7,8] and the references therein for detailed historical descriptions.

    Let a,b,lZ. Let also r2(n) denote the number of representations of n as n=a2+b2, i.e.,

    r2(n)={n=a2+b2,(a,b)Z2}. (1.1)

    In 2013, Zhai [9] studied a related power sum over a sum of two squares and established the following asymptotic formula

    nxλlf(n)r2(n)=xPl(logx)+Of,ε(xθl+ε),

    where P2(t),P4(t),P6(t),P8(t) are polynomials of degree 0,1,4,13, respectively,

    Pl(t)0

    for l=3,5,7, and

    θ2=811,  θ3=1720,  θ4=4346,  θ5=8386,  θ6=184187,  θ7=355358,  θ8=752755.

    Later, Xu [8] refined and generalized the results of Zhai [9]. Recently, Liu [10] further improved Zhai and Xu's results.

    Let σ(n) and ϕ(n) be the sum-of-divisors function and the Euler totient function, respectively. In 2015, Manski et al. [11] proved that

    nxda(n)σb(n)ϕc(n)=xb+c+1P2a1(logx)+O(xb+c+ra+ε),

    where a,b,cR, 2aN, b+c>ra, Pm(t) is a polynomial in t of degree m and ra takes specific values as in [11, (2)].

    Let c,dR. Many scholars also studied the mean values of the arithmetic function λlf(n)σc(n)ϕd(n) and we refer to [12] for historical results. In detail, Wei and Lao [12] proved that

    nxλlf(n)σc(n)ϕd(n)=xc+d+1Pl(logx)+O(xc+d+θl+ε),

    where P2(t), P4(t), P6(t), P8(t) are polynomials in t of degree 0, 1, 4, 13, respectively, P7(t)0, and

    θ2=2337,  θ4=257299,  θ6=201208,  θ7=6768,  θ8=117118.

    In this paper, motivated by the above results we study the asymptotic behavior of the hybrid arithmetic function λlf(n)σc(n)ϕd(n) over the sparse sequence {n:n=a2+b2}. Define

    Sl(f;x)=nxλlf(n)σc(n)ϕd(n)r2(n), (1.2)

    where 1l8, x is a sufficiently large real number, a,b,lZ and c,dR. By combining some analytic methods with properties of some primitive automorphic L-functions we establish the following theorem.

    Theorem 1.1. Let fHk and λf(n) be the n-th normalized Fourier coefficient of f. Under the notations above, for any ε>0, we have

    Sl(f;x)=xc+d+1Al(logx)+Of,ε(xc+d+θl+ε), (1.3)

    where

    Al(t)0

    for l=1,3,5,7, A2(t), A4(t), A6(t), A8(t) are polynomials in t of degree 0, 1, 4, 13, respectively, and

    θ1=12=0.5,θ2=1217=0.7058,θ3=1720=0.85,θ4=52095629=0.9254,θ5=8386=0.9651,θ6=64876607=0.9818,θ7=353356=0.9915,θ8=4885749067=0.9957.

    For a random variable X defined on a countable sample space V, let E(X) denote the mathematical expectation of X. With the help of Theorem 1.3, we can obtain the asymptotic mathematical expectation, denoted by E(λlf(n)σc(n)ϕd(n)r2(n))1nx, of λlf(n)σc(n)ϕd(n) over the sample space

    1nx,   n=a2+b2.

    Theorem 1.2. Under the same notations as in Theorem 1.3, we have

    E(λlf(n)σc(n)ϕd(n)r2(n))1nx=π1xc+dAl(logx)+Of,ε(xc+d+θl1+ε).

    In the following Section 2, we give some preliminary lemmas. In Sections 3 and 4, we complete the proofs of Theorems 1.1 and 1.2, respectively.

    Notation. Throughout this paper, we apply the letter ε to represent a sufficiently small positive constant, whose value may change from statement to statement. The constants, both explicit and implicit, in Vinogradov symbols may depend on ε and f.

    We first introduce some L-functions and then give some necessary lemmas. As usual, we define Riemann zeta function ζ(s) and Dirichlet L-function L(s,χ) as

    ζ(s)=n=11nsandL(s,χ)=n=1χ(n)ns (2.1)

    for Re(s)>1, respectively. For the n-th normalized Fourier coefficient λf(n), Deligne [1] showed that for any prime p there are two complex numbers αf(p) and βf(p) satisfying

    λf(p)=αf(p)+βf(p),  |αf(p)|=|βf(p)|=αf(p)βf(p)=1. (2.2)

    Thus, the Hecke L-function associated to fHk can be represented as

    L(s,f)=n=1λf(n)ns=p(1αf(p)ps)1(1βf(p)ps)1,   Re(s)>1. (2.3)

    Then, the j-th symmetric power L-function with fHk can be defined as, for Re(s)>1,

    L(s,symjf):=pjm=0(1αjmf(p)βmf(p)ps)1=n=1λsymjf(n)ns. (2.4)

    Note that

    L(s,sym0f)=ζ(s)

    and

    L(s,sym1f)=L(s,f).

    For Re(s)>1, the j-th symmetric power L-function twisted by the Dirichlet character χ is defined as

    L(s,symjf×χ):=pjm=0(1αjmf(p)βmf(p)χ(p)ps)1=n=1λsymjf(n)χ(n)ns. (2.5)

    Recall (1.1). It was showed by Iwaniec [13] that

    r2(n)=4d|nχ(d),

    where χ(d) is the non-trivial Dirichlet character modulo 4. Let r(n) denote r2(n)/4. Since χ(n) is completely multiplicative, one has

    r(p)=d|pχ(d)=1+χ(p).

    Therefore, we can write

    Sl(f;x)=nxλlf(n)σc(n)ϕd(n)r2(n)=4nxλlf(n)σc(n)ϕd(n)r(n).

    Now, we turn to give some necessary lemmas. From the recent deep results of Newton and Thorne [14,15], we know that all symjf with jN+ are automorphic cuspidal representations of GLj+1. That is, the j-th symmetric power L-function with L(s,symjf) with jN+ has analytic continuation as an entire function in the whole plane and certain functional equations. Thus, L(s,symjf) with jN+ are general L-functions in sense of Perelli [16].

    Lemma 2.1. For any

    ε>0,  12σ1and|t|1,

    we have

    ζ(σ+it)(1+|t|)1342(1σ)+ε,L(σ+it,f)(1+|t|)23(1σ)+ε,L(σ+it,sym2f)(1+|t|)65(1σ)+ε,L(σ+it,symjf)(1+|t|)j+12(1σ)+ε,   j=3,4,5,.

    Proof. The former three results can be found in the works [17, Theorem 5], [9, Lemma 2.3] and [18, Corollary 1.2], respectively. The last result follows from [16, Theorem 4] and [19, Proposition 1] plainly.

    Lemma 2.2. Let χ be the non-trivial Dirichlet character modulo 4. For any

    ε>0,  12σ1and|t|1,

    one has

    L(σ+it,χ)(1+|t|)1342(1σ)+ε,L(σ+it,f×χ)(1+|t|)23(1σ)+ε,L(σ+it,sym2f×χ)(1+|t|)65(1σ)+ε,L(σ+it,symjf×χ)(1+|t|)j+12(1σ)+ε,   j=3,4,5,.

    Proof. Since χ is the non-trivial Dirichlet character modulo 4, twisting by the character χ does not affect subconvexity bounds and convexity bounds of L-functions in the t's aspect.

    Lemma 2.3. Let fHk and χ be the non-trivial Dirichlet character modulo 4. Then, for any ε>0, jN+ and |t|1, we have

    2TT|L(σ+it,symjf)|2dt|T|(j+1)(1σ)+ε

    and

    2TT|L(σ+it,symjf×χ)|2dt|T|(j+1)(1σ)+ε.

    Proof. The first result is in [16, Lemma 13]. The second result follows from the first result by the same reason as in Lemma 2.2.

    Lemma 2.4. For any UU0, where U0 is a sufficiently large constant, there exists T(U,2U), such that

    maxσ12|ζ(σ±iT)|exp(C(loglogU)2),

    where C>0 is an absolute constant.

    Proof. This result is proved by Ramachandra and Sankaranarayanan [20, Lemma 2].

    Lemma 2.5. For any ε>0, we have

    T0|ζ(57+it)|12dtT1+ε,

    uniformly for T1.

    Proof. This result was established by Ivić [21, Theorem 8.4 and (8.87)].

    Lemma 2.6. Let

    F(s):=n1anns

    be a Dirichlet series with a finite abscissa of absolute convergence σa. Suppose there exists a real number α0 such that

    (i)

    n1|an|nσ(σσa)α,

    where σa<σσa+1, and that B is a non-decreasing function satisfying

    (ii)

    |an|B(n),

    where n1. Then, for

    x2,  T2,andσσa,
    κ:=σaσ+1logx,

    we have

    nxanns=12πiκ+iTκiTF(s+w)xwwdw+O(xσaσ(logx)αT+B(2x)xσ(1+xlogTT)).

    Proof. This is the well-known Perron's formula, which can be found in [22, Corollary 2.4].

    Lemma 2.7. Let

    Fl(s)=n=1λlf(n)σc(n)ϕd(n)r(n)ns.

    Then, for l=1,,8, we have

    Fl(s)=Gl(scd)Hl(s),

    where

    G1(s)=L(s,f)L(s,f×χ),G2(s)=ζ(s)L(s,χ)L(s,sym2f)L(s,sym2f×χ),G3(s)=L2(s,f)L2(s,f×χ)L(s,sym3f)L(s,sym3f×χ),G4(s)=ζ2(s)L2(s,χ)L3(s,sym2f)L3(s,sym2f×χ)L(s,sym4f)L(s,sym4f×χ),G5(s)=L5(s,f)L5(s,f×χ)L4(s,sym3f)L4(s,sym3f×χ)L(s,sym5f)×L(s,sym5f×χ),G6(s)=ζ5(s)L5(s,χ)L9(s,sym2f)L9(s,sym2f×χ)L5(s,sym4f)L5(s,sym4f×χ)×L(s,sym6f)L(s,sym6f×χ),G7(s)=L14(s,f)L14(s,f×χ)L14(s,sym3f)L14(s,sym3f×χ)L6(s,sym5f)×L6(s,sym5f×χ)L(s,sym7f)L(s,sym7f×χ),G8(s)=ζ14(s)L14(s,χ)L28(s,sym2f)L28(s,sym2f×χ)L20(s,sym4f)×L20(s,sym4f×χ)L7(s,sym6f)L7(s,sym6f×χ)L(s,sym8f)×L(s,sym8f×χ),

    where χ is the non-trivial Dirichlet character modulo 4 and Hl(s) is absolutely convergent for

    Re(s)c+d+12.

    Proof. Here, we give the detailed proof for l=7 as an example, since the remaining cases can be proven by following a similar argument.

    For l=7, due to the multiplicative property of λf(n), σ(n), ϕ(n) and r(n), we have

    F7(s)=pk=0λ7f(pk)σc(pk)ϕd(pk)r(pk)pks=p(1+λ7f(p)σc(p)ϕd(p)r(p)ps+λ7f(p2)σc(p2)ϕd(p2)r(p2)p2s+)=p(1+(αf(p)+βf(p))7(p+1)c(p1)dr(p)ps+(α3f(p)β3f(p)αf(p)βf(p))7(p2+p+1)c(p2p)dr2(p)p2s+)=p(1+(αf(p)+βf(p))7(1+χ(p))pscd+O(p2(c+dσ)+pc+dσ1)).

    Further, by the binomial theorem, (2.2) and (2.4) we have

    F7(s)=p(1+(αf(p)+βf(p))7(1+χ(p))p(scd)+O(p2(c+dσ)+pc+dσ1))=p(1+(α7f(p)+7α5f(p)+21α3f(p)+35αf(p)+35βf(p)+21β3f(p)+7β5f(p)+β7f(p))p(scd)+(α7f(p)+7α5f(p)+21α3f(p)+35αf(p)+35βf(p)+21β3f(p)+7β5f(p)+β7f(p))p(scd)χ(p)+O(p2(c+dσ)+pc+dσ1))=L(scd,sym7f)L(scd,sym7f×χ)×p(1+(6α5f(p)+20α3f(p)+34αf(p)+34βf(p)+20β3f(p)+6β5f(p))×p(scd)+(6α5f(p)+20α3f(p)+34αf(p)+34βf(p)+20β3f(p)+6β5f(p))×p(scd)χ(p)+O(p2(c+dσ)+pc+d+1+σ))=L(scd,sym7f)L(scd,sym7f×χ)L6(scd,sym5f)×L6(scd,sym5f×χ)p(1+(14α3f(p)+28αf(p)+28βf(p)+14β3f(p))p(scd)+(14α3f(p)+28αf(p)+28βf(p)+14β3f(p))p(scd)×χ(p)+O(p2(c+dσ)+pc+dσ1))=L(scd,sym7f)L(scd,sym7f×χ)L6(scd,sym5f)×L6(scd,sym5f×χ)L14(scd,sym3f)L14(scd,sym3f×χ)×p(1+(14αf(p)+14βf(p))p(scd)+(14αf(p)+14βf(p))p(scd)×χ(p)+O(p2(c+dσ)+pc+dσ1))=L(scd,sym7f)L(scd,sym7f×χ)L6(scd,sym5f)×L6(scd,sym5f×χ)L14(scd,sym3f)L14(scd,sym3f×χ)×L14(s,f)L14(s,f×χ)p(1+O(p2(c+dσ)+pc+dσ1))=G7(scd)H7(s),

    where H7(s) converges absolutely and uniformly for Re(s)>c+d+12.

    In this section, we shall give the proof of Theorem 1.1. Here, we shall give the detailed proofs for the cases l=7,8. For the cases l=1,3,5, the proofs are similar to the proof of l=7. For the cases l=2,4,6, the proofs are similar to the proof of l=8.

    We first handle the case l=7. Using Lemma 2.6 to nxλ7f(n)σc(n)ϕd(n)r(n), we get

    nxλ7f(n)σc(n)ϕd(n)r(n)=12πic+d+1+ε+iTc+d+1+εiTG7(scd)H7(s)xssds+O(xc+d+1+εT1).

    Since, from Lemma 2.7, G7(scd)H7(s)xss has no poles in the range

    c+d+12+εσc+d+1+ε

    and |t|T, by Cauchy's Residue Theorem we obtain

    nxλ7f(n)σc(n)ϕd(n)r(n)=12πi(c+d+1+ε+iTc+d+12+ε+iT+c+d+12+ε+iTc+d+12+εiT+c+d+12+εiTc+d+1+εiT)G7(scd)H7(s)xssds+O(xc+d+1+εT1):=12πi(I71+I72+I73)+O(xc+d+1+εT1).

    For the horizontal segments, since H7(s) is absolutely convergent in Re(s)>c+d+12, by Lemmas 2.1 and 2.2, we have

    |I71+I73|1+ε12+ε|G7(s)xc+d+σT1|dσxc+d1+ε12+ε|G7(s)xσT1|dσxc+d+εmax12+εσ1+εxσT(23×14+42×14+62×6+82)×(1σ)×21xc+d+εmax12+εσ1+εT3533(xT3563)σxc+d+1+εT1+xc+d+12+εT1753. (3.1)

    Then, for the vertical segment, by Lemmas 2.1–2.3 and Cauchy's inequality, we have

    |I72|T1|G7(12+ε+it)xc+d+12+εc+d+12+ε+it|dtxc+d+12+ε+xc+d+12+εT1|G7(12+ε+it)1t|dtxc+d+12+ε+xc+d+12+εlogTmax1T1T1T1(maxT12tT1|L14(12+ε+it,f)×L14(12+ε+it,f×χ)L14(12+ε+it,sym3f)×L14(12+ε+it,sym3f×χ)L6(12+ε+it,sym5f)×L6(12+ε+it,sym5f×χ)|)(T1T12|L(12+ε+it,sym7f)|2dt)12×(T1T12|L(12+ε+it,sym7f×χ)|2dt)12xc+d+12+ε+xc+d+12+εmax1T1TT1+(23×14+42×14+62×6)×12×2+8×12×12×21xc+d+12+ε+xc+d+12+εT1753xc+d+12+εT1753. (3.2)

    Thus, according to (3.1) and (3.2), we get

    nxλ7f(n)σc(n)ϕd(n)r(n)=O(xc+d+1+εT1+xc+d+12+εT1753).

    Taking

    T=x3356,

    we have

    S7(f;x)=O(xc+d+353356+ε).

    Then, we turn to the case l=8. Using Lemma 2.6 to nxλ8f(n)σc(n)ϕd(n)r(n), we get

    nxλ8f(n)σc(n)ϕd(n)r(n)=12πic+d+1+ε+iTc+d+1+εiTG8(scd)H8(s)xssds+O(xc+d+1+εT1).

    Since, from Lemma 2.7, G8(scd)H8(s)xss only has one pole at s=c+d+1 of order 14 in the range

    c+d+12+εσc+d+1+ε

    and |t|T, by Cauchy's Residue Theorem again we obtain

    nxλ8f(n)σc(n)ϕd(n)r(n)=Ress=c+d+1{F8(s)xss}+12πi(c+d+1+ε+iTc+d+57+ε+iT+c+d+57+ε+iTc+d+57+εiT+c+d+57+εiTc+d+1+εiT) G8(scd)H8(s)xssds+O(xc+d+1+εT1):=xc+d+1A13(logx)+12πi(I81+I82+I83)+O(xc+d+1+εT1),

    where A13(t) is a polynomial in t of degree 13.

    For the horizontal segments, since H8(s) is absolutely convergent in

    Re(s)>c+d+57,

    by Lemmas 2.1, 2.2 and 2.4, we have

    |I81+I83|1+ε57+ε|G8(s)xc+d+σT1|dσxc+d1+ε57+ε|G8(s)xσT1|dσxc+d+εmax57+εσ1+εxσT1342×(1σ)×14+(65×28+52×20+72×7+92)×(1σ)×21xc+d+εmax57+εσ1+εT342815(xT344315)σxc+d+1+εT1+xc+d+57+εT6781105. (3.3)

    Then, for the vertical segment, by Lemmas 2.1–2.3 and 2.5, we have

    |I82|T1|G8(57+ε+it)xc+d+57+εc+d+57+ε+it|dtxc+d+57+ε+xc+d+57+εT1|G8(57+ε+it)1t|dtxc+d+57+ε+xc+d+57+εlogTmax1T1T1T1(maxT12tT1|ζ2(57+ε+it)×L14(57+ε+it,χ)L28(57+ε+it,sym2f)×L28(57+ε+it,sym2f×χ)L20(57+ε+it,sym4f)×L20(57+ε+it,sym4f×χ)L7(57+ε+it,sym6f)×L7(57+ε+it,sym6f×χ)L(57+ε+it,sym8f)×L(57+ε+it,sym8f×χ)|)T1T12|ζ(57+ε+it)|12dtxc+d+57+ε+xc+d+57+εmax1T1TT1+1342×27×16+(65×28+52×20+72×7+92)×27×2+11xc+d+57+ε+xc+d+57+εT48332735xc+d+57+εT48332735. (3.4)

    Thus, according to (3.3) and (3.4), we get

    nxλ8f(n)σc(n)ϕd(n)r(n)=xc+d+1A13(logx)+O(xc+d+1+εT1+xc+d+57+εT48332735).

    Taking

    T=x21049067,

    we have

    S8(f;x)=xc+d+1A13(logx)+O(xc+d+4885749067+ε).

    For the Gauss circle problem, we have the following famous result

    nxn=a2+b21=πx+O(x13),

    where a,bZ. This result can be found in [13, Corollary 4.9]. Then, by the definition of mathematical expectation and Theorem 1.3, for l=1,2,,8, one has

    E(λlf(n)σc(n)ϕd(n))1nxn=a2+b2=nxn=a2+b2λlf(n)σc(n)ϕd(n)nxn=a2+b21=xc+d+1Al(logx)+O(xc+d+θl+ε)πx+O(x13)=π1xc+dAl(logx)+O(xc+d+θl1+ε),

    where the notations of Al(logx) and θl are the same as ones in Theorem 1.3. Thus, we complete the proof of Theorem 1.2.

    In this paper, we establish the asymptotic formula of the sum of the hybrid arithmetic function λlf(n)σc(n)ϕd(n) over the sparse sequence {n:n=a2+b2}, i.e., nxλlf(n)σc(n)ϕd(n)r2(n) for 1l8, where x is a sufficiently large real number, λf(n) is the n-th normalized Fourier coefficient of the primitive holomorphic cusp form f of even integral weight k2 for SL2(Z), σ(n) and ϕ(n) are the sum-of-divisors function and the Euler totient function, r2(n) denotes the number of representations of n as n=a2+b2, a,b,lZ and c,dR. In addition, we also study the mathematical expectation of this hybrid arithmetic function. With the help of Theorems 1.3 and 1.2, we can understand the asymptotic behaviors of the hybrid arithmetic function λlf(n)σc(n)ϕd(n) over the sparse sequence {n:n=a2+b2} more precisely.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors would like to thank the referee for many useful comments on the manuscript. This work is supported by the National Natural Science Foundation of China (Grant No. 12171286).

    The authors declare that they have no conflicts of interest.



    [1] P. Deligne, La conjecture de Weil. Ⅰ, Publ. Math. Inst. Hautes Études Sci., 43 (1974), 273–307. https://doi.org/10.1007/BF02684373 doi: 10.1007/BF02684373
    [2] E. Hecke, Theorie der eisensteinsche reihen höherer stufe und ihre anwendung auf funktionen-theorie und arithmetik, Abhandlungen Math. Semin. Univ. Hamb., 5 (1927), 199–224. https://doi.org/10.1007/BF02952521 doi: 10.1007/BF02952521
    [3] J. Wu, Power sums of Hecke eigenvalues and application, Acta Arith., 137 (2009), 333–344. https://doi.org/10.4064/aa137-4-3 doi: 10.4064/aa137-4-3
    [4] R. A. Rankin, Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions, Math. Proc. Cambridge Philos. Soc., 35 (1939), 351–372. https://doi.org/10.1017/S0305004100021101 doi: 10.1017/S0305004100021101
    [5] A. Selberg, V. Bjerknes, J. Molland, Bemerkungen über eine Dirichletsche Reihe, die mit der theorie der modulformen nahe verbunden ist, Cammermeyer i Komm, 1940.
    [6] B. R. Huang, On Rankin-Selberg problem, Math. Ann., 381 (2021), 1217–1251. https://doi.org/10.1007/s00208-021-02186-7 doi: 10.1007/s00208-021-02186-7
    [7] Y. K. Lau, G. S. Lü, Sums of Fourier coefficients of cusp forms, Q. J. Math., 62 (2011), 687–716. https://doi.org/10.1093/qmath/haq012 doi: 10.1093/qmath/haq012
    [8] C. R. Xu, General asymptotic formula of Fourier coefficients of cusp forms over sum of two squares, J. Number Theory, 236 (2022), 214–229. https://doi.org/10.1016/j.jnt.2021.07.017 doi: 10.1016/j.jnt.2021.07.017
    [9] S. Zhai, Average behavior of Fourier coefficients of cusp forms over sum of two squares, J. Number Theory, 133 (2013), 3862–3876. https://doi.org/10.1016/j.jnt.2013.05.013 doi: 10.1016/j.jnt.2013.05.013
    [10] H. F. Liu, On the asymptotic distribution of Fourier coefficients of cusp forms, Bull. Braz. Math. Soc., 54 (2023), 21. https://doi.org/10.1007/s00574-023-00335-x doi: 10.1007/s00574-023-00335-x
    [11] S. Manski, J. Mayle, N. Zbacnik, The asymptotic distribution of a hybrid arithmetic function, Integers, 15 (2015), A28. https://doi.org/10.5281/zenodo.10456207 doi: 10.5281/zenodo.10456207
    [12] L. L. Wei, H. X. Lao, The mean value of a hybrid arithmetic function associated to Fourier coefficients of cusp forms, Integers, 19 (2019), A44.
    [13] H. Iwaniec, Topics in classical automorphic forms, Providence, Rhode lsland: American Mathematical Society, 1997. https://doi.org/10.1090/gsm/017
    [14] J. Newton, J. A. Thorne, Symmetric power functoriality for holomorphic modular forms, Publ. Math. l'IHÉS, 134 (2021), 1–116. https://doi.org/10.1007/s10240-021-00127-3 doi: 10.1007/s10240-021-00127-3
    [15] J. Newton, J. A. Thorne, Symmetric power functoriality for holomorphic modular forms, Publ. Math. l'IHÉS, 134 (2021), 117–152. https://doi.org/10.1007/s10240-021-00126-4 doi: 10.1007/s10240-021-00126-4
    [16] A. Perelli, General L-functions, Ann. Mat. Pura Appl., 4 (1982), 287–306. https://doi.org/10.1007/BF01761499 doi: 10.1007/BF01761499
    [17] J. Bourgain, Decoupling, exponential sums and the Riemann zeta function, J. Amer. Math. Soc., 30 (2017), 205–224. https://doi.org/10.1090/jams/860 doi: 10.1090/jams/860
    [18] Y. Lin, R. Nunes, Z. Qi, Strong subconvexity for self-dual GL(3) L-functions, Int. Math. Res. Not., 2023 (2023), 11453–11470. https://doi.org/10.1093/imrn/rnac153 doi: 10.1093/imrn/rnac153
    [19] K. Matsumoto, The mean values and the university of Rankin-Selberg L-functions, Number Theory, 2001,201–221.
    [20] K. Ramachandra, A. Sankaranarayanan, Notes on the Riemann zeta-function, J. Indian Math. Soc., 57 (1991), 67–77.
    [21] A. Ivić, Exponent pairs and the zeta function of Riemann, Studia Sci. Math. Hunger., 15 (1980), 157–181.
    [22] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, 1995. https://doi.org/10.1090/gsm/163
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1232) PDF downloads(80) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog