Commentary

Unavoidable corrections for $ \theta\beta $-ideal approximation spaces

  • Commentary of: AIMS Mathematics 7: 2479-2497
  • Received: 12 August 2024 Revised: 09 November 2024 Accepted: 13 November 2024 Published: 15 November 2024
  • MSC : 03E72, 54A10, 68T30, 91B06

  • The short article in hand introduces some amendments for the relationships and claims presented in [16] with the investigation of their correct forms. To elucidate those failures and to support the results obtained herein, we provide an illustrative example. We also elucidate that the rough set models proposed by [11] and [16] are incomparable. Moreover, we demonstrate that the observations, given in the application section of [16], contradict the computations of lower and upper approximations, boundary regions, and accuracy measures as well as violate some well-known properties of Pawlak approximation space.

    Citation: Tareq M. Al-shami, Mohammed M. Ali Al-Shamiri, Murad Arar. Unavoidable corrections for $ \theta\beta $-ideal approximation spaces[J]. AIMS Mathematics, 2024, 9(11): 32399-32408. doi: 10.3934/math.20241553

    Related Papers:

  • The short article in hand introduces some amendments for the relationships and claims presented in [16] with the investigation of their correct forms. To elucidate those failures and to support the results obtained herein, we provide an illustrative example. We also elucidate that the rough set models proposed by [11] and [16] are incomparable. Moreover, we demonstrate that the observations, given in the application section of [16], contradict the computations of lower and upper approximations, boundary regions, and accuracy measures as well as violate some well-known properties of Pawlak approximation space.



    加载中


    [1] E. A. Abo-Tabl, A comparison of two kinds of definitions of rough approximations based on a similarity relation, Inform. Sci., 181 (2011), 2587–2596. https://doi.org/10.1016/j.ins.2011.01.007 doi: 10.1016/j.ins.2011.01.007
    [2] H. M. Abu-Donia, A. S. Salama, Generalization of Pawlak's rough approximation spaces by using $\delta\beta$-open sets, Int. J. Approx. Reason., 53 (2012), 1094–1105. https://doi.org/10.1016/j.ijar.2012.05.001 doi: 10.1016/j.ijar.2012.05.001
    [3] T. M. Al-shami, Topological approach to generate new rough set models, Complex Intell. Syst., 8 (2022), 4101–4113. https://doi.org/10.1007/s40747-022-00704-x doi: 10.1007/s40747-022-00704-x
    [4] T. M. Al-shami, Improvement of the approximations and accuracy measure of a rough set using somewhere dense sets, Soft Comput., 25 (2021), 14449–14460. https://doi.org/10.1007/s00500-021-06358-0 doi: 10.1007/s00500-021-06358-0
    [5] T. M. Al-shami, I. Alshammari, Rough sets models inspired by supra-topology structures, Artif. Intell. Rev., 56 (2023), 6855–6883, https://doi.org/10.1007/s10462-022-10346-7 doi: 10.1007/s10462-022-10346-7
    [6] T. M. Al-shami, D. Ciucci, Subset neighborhood rough sets, Knowl.-Based Syst., 237 (2022), 107868, https://doi.org/10.1016/j.knosys.2021.107868. doi: 10.1016/j.knosys.2021.107868
    [7] T. M. Al-shami, A. Mhemdi, Approximation operators and accuracy measures of rough sets from an infra-topology view, Soft Comput., 27 (2023), 1317–1330. https://doi.org/10.1007/s00500-022-07627-2 doi: 10.1007/s00500-022-07627-2
    [8] M. A. El-Gayar, R. Abu-Gdairi, Extension of topological structures using lattices and rough sets, AIMS Mathematics, 9 (2024) 7552–7569. https://doi.org/10.3934/math.2024366
    [9] M. M. El-Sharkasy, Minimal structure approximation space and some of its application, J. Intell. Fuzzy Syst., 40 (2021), 973–982. https://doi.org/10.3233/JIFS-201090 doi: 10.3233/JIFS-201090
    [10] A. C. Guler, E. D. Yildirim, O. Ozbakir, Rough approximations based on different topolofies via ideals, Turk. J. Math., 46 (2022), 1177–1192. https://doi.org/10.55730/1300-0098.3150 doi: 10.55730/1300-0098.3150
    [11] M. Hosny, Idealization of $j$-approximation spaces, Filomat, 34 (2020), 287–301. https://doi.org/10.2298/FIL2002287H doi: 10.2298/FIL2002287H
    [12] A. Kandil, M. M. Yakout, A. Zakaria, Generalized rough sets via ideals, Ann. Fuzzy Math. Inform., 5 (2013), 525–532.
    [13] E. F. Lashin, A. M. Kozae, A. A. Abo Khadra, T. Medhat, Rough set theory for topological spaces, Int. J. Approx. Reason., 40 (2005), 35–43. https://doi.org/10.1016/j.ijar.2004.11.007 doi: 10.1016/j.ijar.2004.11.007
    [14] R. Mareay, Generalized rough sets based on neighborhood systems and topological spaces, J. Egypt. Math. Soc., 24 (2016), 603–608. https://doi.org/10.1016/j.joems.2016.02.002 doi: 10.1016/j.joems.2016.02.002
    [15] H. I. Mustafa, T. M. Al-shami, R. Wassef, Rough set paradigms via containment neighborhoods and ideals, Filomat, 37 (2023), 4683–4702. https://doi.org/10.2298/FIL2314683M doi: 10.2298/FIL2314683M
    [16] A. S. Nawar, M. A. El-Gayar, M. K. El-Bably, R. A. Hosny, $\theta\beta$-ideal approximation spaces and their applications, AIMS Mathematics, 7 (2022), 2479–2497. https://doi.org/10.3934/math.2022139 doi: 10.3934/math.2022139
    [17] Z. Pawlak, Rough sets, Int. J. Comput. Inform. Sci., 11 (1982), 341–356.
    [18] A. S. Salama, Bitopological approximation space with application to data reduction in multi-valued information systems, Filomat, 34 (2020), 99–110. https://doi.org/10.2298/FIL2001099S doi: 10.2298/FIL2001099S
    [19] P. K. Singh, S. Tiwari, Topological structures in rough set theory: A survey, Hacet. J. Math. Stat., 49 (2020), 1270–1294. https://doi.org/10.15672/hujms.662711 doi: 10.15672/hujms.662711
    [20] J. Wang, X. Zhang, Intuitionistic fuzzy granular matrix: Novel calculation approaches for intuitionistic fuzzy covering-based rough sets, Axioms, 13 (2024), 411. https://doi.org/10.3390/axioms13060411 doi: 10.3390/axioms13060411
    [21] A. Wiweger, On topological rough sets, Bull. Pol. Acad. Sci. Math., 37 (1989), 89–93.
    [22] Y. Y. Yao, Two views of the theory of rough sets in finite universes, Int. J. Approx. Reason., 15 (1996), 291–317. https://doi.org/10.1016/S0888-613X(96)00071-0 doi: 10.1016/S0888-613X(96)00071-0
    [23] Y. Y. Yao, On generalized Pawlak approximation operators, In: Rough Sets and Current Trends in Computing, Berlin, Heidelberg: Springer, 1424 (1998), 298–307. https://doi.org/10.1007/3-540-69115-4_41
    [24] E. D. Yildirim, New topological approaches to rough sets via subset neighborhoods, J. Math., 2022 (2022), 3942708. https://doi.org/10.1155/2022/3942708 doi: 10.1155/2022/3942708
    [25] Y. L. Zhang, J. Li, C. Li, Topological structure of relational-based generalized rough sets, Fund. Inform., 147 (2016), 477–491. https://doi.org/10.3233/FI-2016-1418 doi: 10.3233/FI-2016-1418
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(126) PDF downloads(36) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog