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Abstract: The short article in hand introduces some amendments for the relationships and claims
presented in [16] with the investigation of their correct forms. To elucidate those failures and to support
the results obtained herein, we provide an illustrative example. We also elucidate that the rough set
models proposed by [11] and [16] are incomparable. Moreover, we demonstrate that the observations,
given in the application section of [16], contradict the computations of lower and upper approximations,
boundary regions, and accuracy measures as well as violate some well-known properties of Pawlak
approximation space.
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1. Introduction

Rough set theory, introduced by Pawlak [17], is a powerful mathematical tool for effectively
transacting with imprecise and uncertain information. A key advantage of rough set theory is its
ability to represent data using granular computing inspired by an equivalence relation. As we know,
the granular computing represented by equivalence classes in the original model of Pawlak has been
updated using some neighborhood systems inspired by relations weaker than equivalence relation or
arbitrary relations; for more details about these neighborhood systems, we refer the readers to [6,14,22]
and references mentioned therein. This development assists in canceling a strict condition of an
equivalence relation and expanding the scope of its applications in diverse disciplines.
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The interconnection of topological and rough set theory was first put forward by Wiweger [21], who
explored the topological aspects of rough sets. This led to a fusion of rough set theory and topological
structures becoming a central focus of numerous studies [19, 25]. Then, some techniques to institute
a topology using rough neighborhoods were proposed to represent rough approximation operators
and analyze information systems; see [1, 13]. One of the important topological tools to reduce the
vagueness of knowledge is nearly open sets, so many authors applied to describe rough set models,
such as δβ-open sets [2], somewhat open sets [3], and somewhere dense sets [4]. Quite recently, this
interaction has been developed to involve generalizations of topology, such as supra topology [5], infra
topology [7], minimal structures [9], and bitopology [18]. It is worth noting that several manuscripts
investigated rough set models from different views as [8, 20].

In 2013, Kandi et al. [12] integrated the abstract principle so-called ideal I with rough
neighborhoods to provide a new framework of rough sets paradigms called ideal approximation spaces.
As illustrated in published literature like [10, 15, 24], this framework proves its capability in terms of
enlarging the domain of confirmed knowledge and thereby maximizing the value of accuracy.

In 2022, Nawar et al. [16] proposed two new rough set models, the first one generated by one
of nearly open sets, namely, θβσ-open sets, and the second generated by ideals and I-θβσ-open sets.
However, we note that they provided some incorrect results and relationships that cannot be overlooked
and require correction, particularly those that compare the superiority of their approach over the one
introduced by Hosny [11]. In this regard, we construct a counterexample to show that Theorem 4.1,
Corollary 4.1, and items (2) and (4) of Corollary 4.2 displayed in [16] are false. Moreover, we prove
that their approach and Hosny’s approach [11] are incomparable. Ultimately, we evidence that three
observations on page 2494 of [11] about the given application are incorrect, in general.

2. Preliminaries

Here, we recall some definitions and results that are required to understand this work.
Remember that a relation λ on a nonempty set X is a subset of X×X. We write aλb when (a, b) ∈ λ.

Definition 2.1. [17] Let λ be an equivalence relation on X. The lower approximation and upper
approximation of Z ⊆ X are, respectively, given by:

λ(Z) = ∪{V ∈ X/λ | V ⊆ Z}.

λ(Z) = ∪{V ∈ X/λ | V ∩ Z , ∅},

where X/λ denotes the family of equivalence classes induced by λ.

The triple (X, λ, λ) is called Pawlak rough set models; it is known as the original (standard) model.
The core features of this model are enumerated in the subsequent proposition.

Proposition 2.2. [17] Consider an equivalence relation λ defined on X. For sets V,W, the next
characteristics hold:

(L1) λ(V) ⊆ V (U1) S ⊆ λ(V)

(L2) λ(∅) = ∅ (U2) λ(∅) = ∅

(L3) λ(X) = X (U3) λ(X) = X
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(L4) I f V ⊆ W, then λ(V) ⊆ λ(W) (U4) I f V ⊆ W, then λ(V) ⊆ λ(W)

(L5) λ(V ∩W) = λ(V) ∩ λ(W) (U5) λ(V ∩W) ⊆ λ(V) ∩ λ(W)

(L6) λ(S ) ∪ λ(W) ⊆ λ(V ∪W) (U6) λ(V ∪W) = λ(V) ∪ λ(W)

(L7) λ(Vc) = (λ(V))c (U7) λ(Vc) = (λ(V))c

(L8) λ(λ(V)) = λ(V) (U8) λ(λ(V)) = λ(V)

(L9) λ((λ(V))c) = (λ(V))c (U9) λ((λ(V))c) = (λ(V))c

(L10) λ(W) = W,∀W ∈ X/λ (U10) λ(W) = W,∀W ∈ X/λ

In many positions, the equivalence relations are not attainable. Consequently, the classical approach
has been extended by employing weaker relations than full equivalence. This led to the proposal of
different types of neighborhoods as granular computing alternatives for the equivalence classes.

Definition 2.3. [1,22,23] Consider an arbitrary relation λ on X. If σ ∈ {r, ⟨r⟩, l, ⟨l⟩, i, ⟨i⟩, u, ⟨u⟩}, then
the σ-neighborhoods of a ∈ X, symbolized by Nσ(a), are identified as:

(i) Nr(a) = {b ∈ X : a λ b}.

(ii) Nl(a) = {b ∈ X : b λ a}.

(iii)

N⟨r⟩(a) =


⋂

a∈Nr(b)
Nr(b) : ∃ Nr(b) involving a

∅ : Elsewise

(iv)

N⟨l⟩(a) =


⋂

a∈Nl(b)
Nl(b) : ∃ Nl(b) involving a

∅ : Elsewise

(v) Ni(a) = Nr(a)
⋂
Nl(a).

(vi) Nu(a) = Nr(a)
⋃
Nl(a).

(vii) N⟨i⟩(a) = N⟨r⟩(a)
⋂
N⟨l⟩(a).

(viii) N⟨u⟩(a) = N⟨r⟩(a)
⋃
N⟨l⟩(a).

Henceforward, unless otherwise specified, we will consider σ to belong to the set
{r, ⟨r⟩, l, ⟨l⟩, i, ⟨i⟩, u, ⟨u⟩}.

Remark 2.4. The authors of [16] incorrectly mentioned the definitions of N⟨r⟩(a) and N⟨l⟩(a). They
overlooked the cases that do not exist Nr(b) containing a and Nl(b) containing a, which leads to
incorrect computations for some cases, especially when the given binary relation is not serial or inverse
serial. Therefore, we should consider these cases when we define N⟨r⟩(a) and N⟨l⟩(a) as given in (iii)
and (iv) of Definition 2.3.

Definition 2.5. [1] Consider a relation λ on X and let ζσ denote a mapping from X to 2X, associating
each member a ∈ X with its σ-neighborhood in 2X. Consequently, the triple (X, λ, ζσ) is termed a
σ-neighborhood space, abbreviated as σ-NS .
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Theorem 2.6. [1] It may generate a topology ϑσ on X using Nσ-neighborhoods by the next formula

ϑσ = {V ⊆ X : Nσ(a) ⊆ V for each a ∈ V}

The main concepts of rough set paradigms inspired by a topology given in Theorem 2.6 are
mentioned in the next two definitions.

Definition 2.7. [1] Let (X, λ, ζσ) be a σ-NS and ϑσ be a topology described in Theorem 2.6. For each
σ, the σ-lower and σ-upper, σ-boundary, and σ-accuracy of a subset Z of X are, respectively, defined
by the following formulas.

(i) H
σ
(Z) = ∪{V ∈ ϑσ : V ⊆ Z} = intσ(Z), where intσ(Z) is the interior points of Z in (X, ϑσ).

(ii) Hσ(Z) = ∩{W : Z ⊆ W and ∈ Wc ∈ ϑσ} = clσ(Z), where clσ(Z) is the closure points of Z in
(X, ϑσ).

(iii) Bσ(Z) = Hσ(Z) \ H
σ
(Z)

(iv) Aσ(Z) = |Hσ(Z)|

|Hσ(Z)|
, where Z is a nonempty set.

Definition 2.8. [1] A subset Z of (X, λ, ζσ) is called an σ-exact (resp., σ-rough) set ifH
σ
(Z) = Hσ(Z)

(resp.,H
σ
(Z) , Hσ(Z))

Definition 2.9. A nonempty subclass I of 2X is called an ideal on X provided that the next conditions
are satisfied.

(i) The union of any two members in I is a member of I.

(ii) If V ∈ I, then any subset of V is a member of I.

Theorem 2.10. [11,12] It may generate a topology ϑIσ on X usingNσ-neighborhoods and an ideal I
by the next formula

ϑIσ = {V ⊆ X : Nσ(a) \ V ∈ I for each a ∈ V}

The main concepts of rough set paradigms inspired by a topology given in Theorem 2.10 are
mentioned in the next two definitions.

Definition 2.11. [11] Let (X, λ, ζσ) be a σ-NS , I be an ideal on X, and ϑIσ be a topology described in
Theorem 2.10. For each σ, the Iσ-lower and Iσ-upper, Iσ-boundary, and Iσ-accuracy of a subset
Z of X are, respectively, defined by the following formulas.

(i) HI
σ
(Z) = ∪{V ∈ ϑIσ : V ⊆ Z} = intIσ(Z), where intIσ(Z) is the interior points of Z in (X, ϑIσ).

(ii) H
I

σ(Z) = ∩{W : Z ⊆ W and ∈ Wc ∈ ϑIσ} = clIσ(Z), where clIσ(Z) is the closure points of Z in
(X, ϑIσ).

(iii) BIσ(Z) = H
I

σ(Z) \ HI
σ
(Z)

(iv) AIσ(Z) = |H
I
σ(Z)|

|H
I

σ(Z)|
, where Z is a nonempty set.

Definition 2.12. [11] Let (X, λ, ζσ) be a σ-NS and I be an ideal on X. A subset Z of X is called an

Iσ-exact (resp., Iσ-rough) set ifHI
σ
(Z) = H

I

σ(Z) (resp.,HI
σ
(Z) , H

I

σ(Z)).
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3. Main results

This section rectifies some invalid claims and relationships presented in [16]. An elucidative
example is provided to support the amendments that were made.

To begin, we recall the definition of I-θβσ-open sets as introduced in [16].

Definition 3.1. [16] Let (X, λ, ζσ) be a σ-NS and I be an ideal on X. Then, a subset of V of X is
called I-θβσ-open if V ⊆ clσ(intσ(cl⋆θσ (V))) such that

cl⋆θσ (V) = V ∪ V⋆θσ where V⋆θσ = {a ∈ X : V ∩ clσ(G) < I for every G ∈ ϑσ containing a}.

The complement of an I-θβσ-open set is named I-θβσ-closed. The classes of I-θβσ-open subsets
and I-θβσ-closed subsets are respectively symbolized by I-θβσO(X) and I-θβσC(X).

Then, they introduced the ideas of lower and upper approximations, boundary regions, and accuracy
measures in relation to the classes of I-θβσO(X) and I-θβσC(X) as follows.

Definition 3.2. [16] Let (X, λ, ζσ) be a σ-NS and I be an ideal on X. For each σ, the I-θβσ-lower
and I-θβσ-upper, I-θβσ-boundary, and I-θβσ-accuracy of a subset Z of X are, respectively, defined
by the following formulas.

(i) HI−θβ
σ

(Z) = ∪{V ∈ I-θβσO(X) : V ⊆ Z} = intI−θβσ (Z), where intI−θβσ (Z) is the interior points of Z in
(X,I-θβσO(X)).

(ii) H
I−θβ

σ (Z) = ∩{W ∈ I-θβσC(X) : Z ⊆ W} = clI−θβσ (Z), where clI−θβσ (Z) is the closure points of Z in
(X,I-θβσO(X)).

(iii) BI−θβσ (H) = H
I−θβσ

σ (Z) \ HI−θβσ
σ

(Z)

(iv) AI−θβσ (Z) = |H
I−θβσ
σ (Z)|

|H
I−θβσ
σ (Z)|

, where Z is a nonempty set.

Remark 3.3. One can prove that the structure (X,I-θβσO(X)) is closed under arbitrary unions. In
contrast, the intersection of two I-θβσ-open sets fails to be an I-θβσ-open set, in general. Therefore,
(X,I-θβσO(X)) forms a supra topology on X.

Definition 3.4. [16] Let (X, λ, ζσ) be a σ-NS and I be an ideal on X. A subset Z of X is called an

I-θβσ-exact (resp., I-θβσ-rough) set ifHI−θβ
σ

(Z) = H
I−θβ

σ (Z) (resp.,HI−θβ
σ

(Z) , H
I−θβ

σ (Z))

The authors of [16] claimed the following theorem and two corollaries; they were presented in [16]
in the following order: Theorem 4.1, Corollary 4.1, and items (2) and (4) of Corollary 4.2.

Theorem 3.5. [16] Let (X, λ, ζσ) be a σ-NS and I be an ideal on X. Then, we have the following
properties for any subset Z of X.

(i) H
σ
(Z) ⊆ HI

σ
(Z) ⊆ HI−θβ

σ
(Z).

(ii) H
I−θβ

σ (Z) ⊆ H
I

σ(Z) ⊆ Hσ(Z).

Corollary 3.6. [16] Let (X, λ, ζσ) be a σ-NS and I be an ideal on X. Then, we have the following
properties for any subset Z of X.
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(i) BI−θβσ (Z) ⊆ BIσ(Z) ⊆ Bσ(Z).

(ii) Aσ(Z) ≤ AIσ(Z) ≤ AI−θβσ (Z).

Corollary 3.7. [16] Let (X, λ, ζσ) be a σ-NS and I be an ideal on X. Then,

(i) Every I-σ-exact set is I-θβσ-exact.

(ii) Every I-θβσ-rough set is I-σ-rough.

We give the subsequent counterexample to show that Theorem 3.5 is incorrect in general.

Example 3.8. Let λ = {(a, a), (b, b), (c, c), (a, b), (b, a), (x, a), (x, b), (x, c)} be a binary relation on X =
{a, b, c, x} and I = {∅, {a}, {b}, {a, b}} be an ideal on X. Then, the r-neighborhoods of elements of X
are Nr(a) = Nr(b) = {a, b}, Nr(c) = {c}, and Nr(x) = {a, b, c}. Accordingly, we compute the following
classes:

(i) ϑr = {∅,X, {c}, {a, b}, {a, b, c}},

(ii) ϑIr = ϑr ∪ {{a}, {b}, {a, c}, {b, c}, {c, x}, {a, c, x}, {b, c, x}}, and

(iii) I-θβrO(X) = ϑr ∪ {{x}, {a, x}, {b, x}, {c, x}, {a, b, x}, {a, c, x}, {b, c, x}}.

Now, we calculate the lower and upper approximations inspired by the classes of ϑIr and I-θβrO(X)
in Table 1.

Table 1. Lower and upper approximations in relation to the methods of Hosny [11] and
Nawar et al. [16]

Methods Hosny method ϑIr [11] Nawar et al. method I-θβrC(X) [16]

Z ⊆ X H
I

r (Z) H
I

r (Z) H
I−θβ
r (Z) H

I−θβ

r (Z)
{a} {a} {a} ∅ {a}
{b} {b} {b} ∅ {b}
{c} {c} {c, x} {c} {c}
{x} ∅ {x} {x} {x}
{a, b} {a, b} {a, b} {a, b} {a, b}
{a, c} {a, c} {a, c, x} {c} {a, c}
{a, x} {a} {a, x} {a, x} {a, b, x}
{b, c} {b, c} {b, c, x} {c} {b, c}
{b, x} {b} {b, x} {b, x} {a, b, x}
{c, x} {c, x} {c, x} {c, x} {c, x}
{a, b, c} {a, b, c} X {a, b, c} {a, b, c}
{a, b, x} {a, b} {a, b, x} {a, b, x} {a, b, x}
{a, c, x} {a, c, x} {a, c, x} {a, c, x} X

{b, c, x} {b, c, x} {b, c, x} {b, c, x} X

On the one hand, one can see from Table 1 that HI−θβr ({a, c}) = {c} ⊆ HIr ({a, c}) = {a, c} and

H
I

r ({a, c, x}) = {a, c, x} ⊆ H
I−θβ

r ({a, c, x}) = X. Therefore, there exist subsets V,W such that HIr (V) ⊈
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H
I−θβ
r (V) and H

I−θβ

r (W) ⊈ H
I

r (W), which revokes the claims of Theorem 3.5. On the other hand,

H
I

r ({b, x}) = {b} ⊆ HI−θβr ({b, x}) = {b, x} andH
I−θβ

r ({a, c}) = {a, c} ⊆ H
I

r ({a, c}) = {a, c, x}.
This implies that the rough approximation operators generated by the methods introduced in [11]

and [16] are independent of each other. Hence, the claims given in Theorem 3.5 are false.
Accordingly, one can note that Corollary 4.2 of [16] (mentioned here as Corollary 3.7) is also

wrong. To confirm this matter, take a subset V = {a}. By Table 1, we find thatHIr (V) = H
I

r (V) = V, so
V is I-r-exact. However,HI−θβr (V) = ∅ , HI−θβr (V) = {a}, so V is not I-θβr-exact. Equivalently, V is
I-θβr-rough but not I-r-rough.

Consequently, Corollary 4.1 of [16] (mentioned here as Corollary 3.6) is false. To illustrate this
conclusion, we provide Table 2 which is based on the computations of Table 1.

Table 2. Boundary region and accuracy in relation to the methods of Hosny [11] and Nawar
et al. [16]

Methods Hosny method ϑIr [11] Nawar et al. method I-θβrC(X) [16]
Z ⊆ X BIr (Z) AIr (Z) B

I−θβ
r (Z) A

I−θβ
r (Z)

{a} ∅ 1 {a} 0
{b} ∅ 1 {b} 0
{c} {x} 1

2 ∅ 1
{x} {x} 0 ∅ 1
{a, b} ∅ 1 ∅ 1
{a, c} {x} 2

3 {c} 1
2

{a, x} {x} 1
2 {b} 2

3
{b, c} {x} 2

3 {b} 1
2

{b, x} {x} 1
2 {a} 2

3
{c, x} ∅ 1 ∅ 1
{a, b, c} {x} 3

4 ∅ 1
{a, b, x} {x} 2

3 ∅ 1
{a, c, x} ∅ 1 {b} 3

4
{b, c, x} ∅ 1 {a} 3

4

On the one hand, one can see from Table 2 thatBIr ({a}) = ∅ ⊆ BI−θβr ({a}) = {a} andAI−θβr ({a}) = 0 <
AIr ({a}) = 1. Therefore, there exist subsets V,W such that BI−θβr (V) ⊈ BIr (V) andAIr (W) ≮ AI−θβr (W),
which revokes the claims of Corollary 3.6. On the other hand, BI−θβr ({c}) = ∅ ⊆ BIr ({c}) = {x} and
AIr ({c}) = 0 < AI−θβr ({c}) = 1

2 .
This implies that the boundary regions and accuracy induced by the methods introduced in [11]

and [16] are independent of each other. Hence, the claims given in Corollary 3.6 need not be true, in
general.

Now, we put forward the correct relationships between the notions presented in Theorem 3.5 and
Corollaries 3.6 and 3.7 in the following remark.

Remark 3.9. Let (X, λ, ζσ) be a σ-NS and I be an ideal on X. Then, there is no relationship between
the following concepts inspired by the approaches of [11] and [16].
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(i) The lower approximationsHI
σ

andHI−θβ
σ

.

(ii) The upper approximationsH
I

σ andH
I−θβ

σ .

(iii) The boundary regions BIσ and BI−θβσ .

(iv) The accuracy measuresAIσ andAI−θβσ .

(v) I-σ-exact and I-θβσ-exact (I-σ-rough and I-θβσ-rough) sets.

In Figure 1, three observations were mentioned on page 2494 of [16] concerning the suggested
application.

Figure 1. Observations given on page 2494 of [16].

In what follows, we show that these observations are incorrect or inaccurate.

(i) The first and second items are not true since the approach of [16] is not the finest one. It is
not stronger than the approach proposed by Hosny [11] as we illustrated in the aforementioned
discussion. The appropriate description is that the methods of [11] and [16] are incomparable.

(ii) The third item is inaccurate since the approach of [16] does not preserve all properties of the
standard model of Pawlak (we mentioned these properties in Proposition 2.7) since it can be
noted that the properties L5 and U6 are not satisfied. To confirm this point, take subsets V =
{a, b}, W = {a, x}, Y = {a}, and Z = {x}. Then, HI−θβ

σ
(V) = V and HI−θβ

σ
(W) = W, whereas

H
I−θβ
σ

(V ∩W) = ∅ is a proper subset of HI−θβ
σ

(V) ∩ HI−θβ
σ

(W). Also, H
I−θβ

σ (Y ∪ Z) = {a, b, x},

whereasH
I−θβ

σ (Y)∪H
I−θβ

σ (Z) = {a, x} is a proper subset ofH
I−θβ

σ (Y ∪ Z). This means that rough
set models provided in [16] violate some properties of the standard model of Pawlak, which
disproves the third observation of Figure 1.

4. Conclusions

In this note, we have showed invalid results and relationships introduced in [16]. With the help
of an illustrative example, we have demonstrated that Theorem 4.1, Corollary 4.1, and items (2)
and (4) of Corollary 4.2 given in [16] are incorrect. Also, we have concluded that the rough set
paradigms proposed by Hosny [11] and Nawar et al. [16] are independent of each other; that is, they
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are incomparable. Then, we pointed out the concrete relationships between these rough set models.
Finally, we have elucidated that three observations on page 2494 of [16] about the given application
are false, as well as emphasized that there is no preponderance for Nawar et al.’s approach [16] over
Hosny’s approach [11] and vice versa in terms of improving the approximation operators and reducing
the size of uncertainty.
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