Research article

The nonisospectral integrable hierarchies of three generalized Lie algebras

  • Received: 18 August 2024 Revised: 14 September 2024 Accepted: 18 September 2024 Published: 20 September 2024
  • MSC : 37K05, 37K40, 35Q53

  • We construct the generalized Lie algebras $ \mathfrak{sp}(4) $, $ \mathfrak{so}(5) $, and $ \mathfrak{so}(3, 2) $, and derive three kinds of (1+1)-dimensional nonisospectral integrable hierarchies. Moreover, we obtain their Hamiltonian structures. Finally, based on Lie algebras $ \mathfrak{sp}(4) $, $ \mathfrak{so}(5) $, and $ \mathfrak{so}(3, 2) $, by using the semi-direct sum decomposition of Lie algebras, we construct three kinds of integrable coupling systems associated with these three Lie algebras.

    Citation: Baiying He, Siyu Gao. The nonisospectral integrable hierarchies of three generalized Lie algebras[J]. AIMS Mathematics, 2024, 9(10): 27361-27387. doi: 10.3934/math.20241329

    Related Papers:

  • We construct the generalized Lie algebras $ \mathfrak{sp}(4) $, $ \mathfrak{so}(5) $, and $ \mathfrak{so}(3, 2) $, and derive three kinds of (1+1)-dimensional nonisospectral integrable hierarchies. Moreover, we obtain their Hamiltonian structures. Finally, based on Lie algebras $ \mathfrak{sp}(4) $, $ \mathfrak{so}(5) $, and $ \mathfrak{so}(3, 2) $, by using the semi-direct sum decomposition of Lie algebras, we construct three kinds of integrable coupling systems associated with these three Lie algebras.



    加载中


    [1] M. Ablowitz, P. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge: Cambridge University Press, 1991.
    [2] P. Drazin, R. Johnson, Solitons: An introduction, Cambridge: Cambridge University Press, 1989.
    [3] C. Gu, Soliton theory and its applications, Springer, 1995.
    [4] F. Calogero, A method to generate solvable nonlinear evolution equations, Lett. Nuovo Cimento, 14 (1975), 443–447. https://doi.org/10.1007/BF02763113 doi: 10.1007/BF02763113
    [5] S. Chen, X. Lü, Lump and lump-multi-kink solutions in the (3+1)-dimensions, Commun. Nonlinear Sci., 109 (2022), 106103. https://doi.org/10.1016/j.cnsns.2021.106103 doi: 10.1016/j.cnsns.2021.106103
    [6] S. Bai, X. Yin, N. Cao, L. Xu, A high dimensional evolution model and its rogue wave solution, breather solution and mixed solutions, Nonlinear Dyn., 111 (2023), 12479–12494. https://doi.org/10.1007/s11071-023-08467-x doi: 10.1007/s11071-023-08467-x
    [7] N. Cao, X. Yin, S. Bai, L. Xu, Breather wave, lump type and interaction solutions for a high dimensional evolution model, Chaos, Soliton Fract., 172 (2023), 113505. https://doi.org/10.1016/j.chaos.2023.113505 doi: 10.1016/j.chaos.2023.113505
    [8] G. Tu, The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems, J. Math. Phys., 30 (1989), 330–338. https://doi.org/10.1063/1.528449 doi: 10.1063/1.528449
    [9] H. Dong, A subalgebra of Lie algebra $A_2$ and its associated two types of loop algebra, as well as Hamiltonian structures of integrable hierarchy, J. Math. Phys., 50 (2009), 053519. https://doi.org/10.1063/1.3122667 doi: 10.1063/1.3122667
    [10] F. Guo, Three new integrable hierarchies of equations, Commun. Theor. Phys. (Beijing), 48 (2007), 769–772. https://doi.org/10.1088/0253-6102/48/5/001 doi: 10.1088/0253-6102/48/5/001
    [11] F. Guo, Y. Zhang, Two unified formulae, Phys. Lett. A, 366 (2007), 403–410. https://doi.org/10.1016/j.physleta.2007.02.062
    [12] W. Ma, A multi-component Lax integrable hierarchy with Hamiltonian structure, Pac. J. Appl. Math., 1 (2008), 69–75. Available from: https://www.researchgate.net/publication/255659001
    [13] Y. Zhang, E. Fan, H. Tam, A few expanding Lie algebras of the Lie algebra $A_1$ and applications, Phys. Lett. A, 359 (2006), 471–480. https://doi.org/10.1016/j.physleta.2006.07.003 doi: 10.1016/j.physleta.2006.07.003
    [14] G. Tu, R. Andrushkiw, X. Huang, A trace identity and its application to integrable systems of 1+2 dimensions, J. Math. Phys., 32 (1991), 1900–1907. https://doi.org/10.1063/1.529204 doi: 10.1063/1.529204
    [15] S. Lou, M. Jia, X. Tang, F. Huang, Vortices, circumfluence, symmetry groups, and Darboux transformations of the (2+1)-dimensional Euler equation, Phys. Rev. E, 75 (2007), 056318. http://dx.doi.org/10.1103/PhysRevE.75.056318 doi: 10.1103/PhysRevE.75.056318
    [16] Q. Zha, Z. Li, Darboux transformation and bidirectional soliton solutions of a new (2+1)-dimensional soliton equation, Phys. Lett. A, 372 (2008), 1422–1428. https://doi.org/10.1016/j.chaos.2008.02.039 doi: 10.1016/j.chaos.2008.02.039
    [17] Y. Zhang, J. Gao, G. Wang, Two (2+1)-dimensional hierarchies of evolution equations and their Hamiltonian structures, Appl. Math. Comput., 243 (2014), 601–606. https://doi.org/10.1016/j.amc.2014.06.012 doi: 10.1016/j.amc.2014.06.012
    [18] Y. Zhang, L. Wu, Two (2+1)-dimensional expanding dynamical systems associated to the mKP hierarchy, Appl. Math. Comput., 268 (2015), 561–574. https://doi.org/10.1016/j.amc.2015.06.112 doi: 10.1016/j.amc.2015.06.112
    [19] B. Ren, J. Lin, A new (2+1)-Dimensional integrable equation, Commun. Theor. Phys., 51 (2009), 13–16. https://doi.org/10.1088/0253-6102/51/1/03 doi: 10.1088/0253-6102/51/1/03
    [20] Y. Zhang, J. Mei, H. Guan, A method for generating isospectral and nonisospectral hierarchies of equations as well as symmetries, J. Geom. Phys., 147 (2020), 103538. https://doi.org/10.1016/j.geomphys.2019.103538 doi: 10.1016/j.geomphys.2019.103538
    [21] Y. Zhang, X. Zhang, A scheme for generating nonisospectral integrable hierarchies and its related applications, Acta Math. Sinica, Engl. Ser. Mar., 37 (2021), 707–730. https://doi.org/10.1007/s10114-021-0392-8 doi: 10.1007/s10114-021-0392-8
    [22] H. Wang, Y. Zhang, A new multi-component integrable coupling and its application to isospectral and nonisospectral problems, Commun. Nonlinear Sci., 105 (2022), 106075. https://doi.org/10.1016/j.cnsns.2021.106075 doi: 10.1016/j.cnsns.2021.106075
    [23] J. Yu, H. Wang, C. Li, A type of multi-component nonisospectral generalized nonlinear Schrodinger hierarchies, Theor. Math. Phys., 215 (2023), 837–861. https://doi.org/10.1134/S0040577923060077 doi: 10.1134/S0040577923060077
    [24] H. Wang, B. He, A class of extended Lie superalgebras and their applications, Chaos, Soliton Fract., 168 (2023), 113145. https://doi.org/10.1016/j.chaos.2023.113145 doi: 10.1016/j.chaos.2023.113145
    [25] H. Wang, B. He, 2+1 dimensional nonisospectral super integrable hierarchies associated with a class of extended Lie superalgebras, Chaos, Soliton Fract., 171 (2023), 113443. https://doi.org/10.1016/j.chaos.2023.113443 doi: 10.1016/j.chaos.2023.113443
    [26] W. Ma, M. Chen, Hamiltonian and quasi-Hamiltonian structures associated with semidirect sums of Lie algebras, J. Phys. A: Math. Gen., 39 (2006), 10787–10801. https://doi.org/10.1088/0305-4470/39/34/013 doi: 10.1088/0305-4470/39/34/013
    [27] W. Ma, X. Xu, Y. Zhang, Semi-direct sums of Lie algebras and continuous integrable couplings, Phys. Lett. A, 351 (2006), 125–130. https://doi.org/10.1016/j.physleta.2005.09.087 doi: 10.1016/j.physleta.2005.09.087
    [28] W. Ma, X. Xu, Y. Zhang, Semidirect sums of Lie algebras and discrete integrable couplings, J. Math. Phys., 47 (2006), 053501. https://doi.org/10.1063/1.2194630 doi: 10.1063/1.2194630
    [29] H. Wang, Y. Zhang, A kind of generalized integrable couplings and their bi-Hamiltonian structure, Inter. J. Theor. Phys., 60 (2021), 1797–1812. https://doi.org/10.1007/s10773-021-04799-9 doi: 10.1007/s10773-021-04799-9
    [30] H. Wang, Y. Zhang, A kind of nonisospectral and isospectral integrable couplings and their Hamiltonian systems, Commun. Nonlinear Sci., 99 (2021), 105822. https://doi.org/10.1016/j.cnsns.2021.105822 doi: 10.1016/j.cnsns.2021.105822
    [31] H. Sun, Q. Han, Lie algebras and lie superalgebras and their applications in physics, Beijing: Peking University Press, 1999.
    [32] S. Bradlow, O. Garcia-Prada, P. Gothen, Deformations of maximal representations in $Sp(4, R)$, Q. J. Math., 63 (2012), 795–843. https://doi.org/10.1093/qmath/har010 doi: 10.1093/qmath/har010
    [33] D. Alina, O. Anatol, Integrable systems related to deformed $so(5)$, SIGMA Symmetry Integrability Geom. Methods Appl., 10 (2014), 18pp. https://doi.org/10.3842/SIGMA.2014.056 doi: 10.3842/SIGMA.2014.056
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(146) PDF downloads(32) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog